微博聚类文本分析和可视化

该博客详细介绍了如何使用Python进行微博数据抓取、预处理,进而进行词云、热度地图、时间序列分析、关系图、文本聚类、LDA主题模型以及情感分析的全过程,涉及词向量、tfidf、LSTM等多种技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文使用python抓取微博数据并对微博文本分析和可视化,LDA(树图)、关系图、词云、时间趋势(折线图)、热度地图、词典情感分析(饼图和3D柱状图)、词向量神经网络情感分析、tfidf聚类、词向量聚类、关键词提取、文本相似度分析等。

数据预处理

  1. prepro.py、pre_graph.py、senti_pre.py

    为了应对各种分析需求,需要数据预处理,具体所需数据文件类型和输出的结果数据结构见这三个py文件

    PS:

    prepro.py 运行时根据需要修改123、143、166行三处代码

    pre_graph.py 运行时根据需要修改127、140行两处代码

    senti_pre.py 运行时根据需要修改第119行代码

  2. zh_wiki.py、langconv.py

    这两个py文件是用于繁体转简体的无需修改

    数据分析和可视化
    词云:wc.py(需要跑完prepro.py)

    根据需要修改3、19、26行代码

    热度地图: map.py(需要跑完prepro.py)

    根据需要修改第8行代码


    转发、评论、点赞时间序列: line.py(需要跑完senti_pre.py 和 senti_analy.py)


    微博评论关系图: graph.py(需要跑完pre_graph.py)

    (参考)


    文本聚类: cluster_tfidf.py

微博关键词聚类分析是指使用Python编程语言进行对微博中出现的关键词进行聚类分类的分析方法。下面我将从数据收集、预处理、聚类分析三个方面进行说明。 数据收集: 首先需要收集微博数据,可以通过微博开放平台的API获取需要的数据。API提供了获取微博内容、用户信息、评论等功能,并可以根据关键词进行筛选。通过调用API获取数据,将其保存为适合Python操作的数据格式,如CSV或JSON。 预处理: 在进行聚类分析之前,需要对微博数据进行预处理,主要包括数据清洗特征提取。数据清洗包括去除重复数据、去除停用词、去除标点符号等,确保数据的准确性一致性。特征提取可以使用python中的文本特征提取工具,例如NLTK或jieba库,将文本数据转化为数值向量表示,以便后续的聚类分析。 聚类分析: Python提供了多种聚类分析的库,如scikit-learngensim。通过调用这些库的聚类算法,可以实现对预处理好的微博数据进行聚类分析。常用的聚类算法有K-means、层次聚类、DBSCAN等。这些算法可以根据关键词的相似度将微博数据划分为不同的类别,并可通过可视化工具将聚类结果呈现出来,以便进一步分析。 综上所述,微博关键词聚类分析可以通过Python编程语言实现。通过数据收集、预处理聚类分析三个步骤,可以对微博中出现的关键词进行有效的聚类分类分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值