XGBoost系列文章(五):实战应用与案例
本文是XGBoost系列的第五篇,通过10个实战场景与代码示例,手把手解析XGBoost在分类、回归、排序等任务中的应用技巧,涵盖数据预处理、模型训练、评估与解释全流程。所有代码可直接运行,适合快速上手工业级项目。
1. 如何用XGBoost解决二分类问题(如金融风控)?
场景:金融风控中的欺诈检测(二分类,预测用户是否为欺诈交易)。
代码示例:
import xgboost as xgb
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
# 加载数据(假设已处理好特征)
X, y = load_fraud_data() # 自定义数据加载函数
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型(使用AUC评估)
model = xgb.XGBClassifier(
objective='binary:logistic',
eval_metric='auc',
scale_pos_weight=10 # 处理类别不平衡(假设负样本是正样本的10倍)
)
model.fit(
X_train, y_train,
eval_set=[(X_test, y_test)],
early_stopping_rounds=20,
verbose=10
)
# 预测并评估
y_pred = model.predict_proba(X_test)[:, 1]
print("Test AUC:", roc_auc_score(y_test, y_pred))
关键点:
- 类别不平衡时需设置
scale_pos_weight
。 - 优先使用
roc_auc_score
评估模型性能。
2. 多分类任务(如手写数字识别)的XGBoost实现步骤?
场景:MNIST手写数字识别(10分类)。
代码示例:
from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score
# 加载数据
digits = load_digits()
X, y = digits.data, digits.target
# 训练模型
model = xgb.XGBClassifier(
objective='multi:softprob', # 多分类概率输出
num_class=10,
eval_metric='mlogloss' # 多分类对数损失
)
model.fit(X, y)
# 预测并评估
y_pred =