XGBoost系列文章(五):实战应用与案例


XGBoost系列文章(五):实战应用与案例

本文是XGBoost系列的第五篇,通过10个实战场景与代码示例,手把手解析XGBoost在分类、回归、排序等任务中的应用技巧,涵盖数据预处理、模型训练、评估与解释全流程。所有代码可直接运行,适合快速上手工业级项目。


1. 如何用XGBoost解决二分类问题(如金融风控)?

场景:金融风控中的欺诈检测(二分类,预测用户是否为欺诈交易)。

代码示例

import xgboost as xgb
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split

# 加载数据(假设已处理好特征)
X, y = load_fraud_data()  # 自定义数据加载函数
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型(使用AUC评估)
model = xgb.XGBClassifier(
    objective='binary:logistic',
    eval_metric='auc',
    scale_pos_weight=10  # 处理类别不平衡(假设负样本是正样本的10倍)
)
model.fit(
    X_train, y_train,
    eval_set=[(X_test, y_test)],
    early_stopping_rounds=20,
    verbose=10
)

# 预测并评估
y_pred = model.predict_proba(X_test)[:, 1]
print("Test AUC:", roc_auc_score(y_test, y_pred))

关键点

  • 类别不平衡时需设置scale_pos_weight
  • 优先使用roc_auc_score评估模型性能。

2. 多分类任务(如手写数字识别)的XGBoost实现步骤?

场景:MNIST手写数字识别(10分类)。

代码示例

from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score

# 加载数据
digits = load_digits()
X, y = digits.data, digits.target

# 训练模型
model = xgb.XGBClassifier(
    objective='multi:softprob',  # 多分类概率输出
    num_class=10,
    eval_metric='mlogloss'       # 多分类对数损失
)
model.fit(X, y)

# 预测并评估
y_pred =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Is code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值