一 混淆矩阵
| 实际1 | 实际0 |
---|---|---|
预测正确(1) | TP | FP |
预测为负(0) | FN | TN |
二 性能指标:
精确度(Accuary) =(TP+FN)/(TP+FN+FP+TN)
查准率(Precision)=TP/(TP+FP)
查全率(Recall)=TP/(TP+FN)
F1_score=2PR/(P+R)
注:P-Precision,R-Recall,F1_score指标综合了P和R的产出结果。取值范围[0,1],取值越大表示模型越好
三 补充 AUC
AUC(Area Under Curve):
ROC曲线与X轴围成的面积,很多时候用AUC值作为算法好坏的评判标准。面积越大,表示分类性能越好。