性能指标:精确度(Accuary) 查准率(Precision) 查全率(Recall) F1_score

一  混淆矩阵

 

实际1

实际0

预测正确(1)

TP

FP

预测为负(0)

FN

TN

二  性能指标:

精确度(Accuary) =(TP+FN)/(TP+FN+FP+TN)

查准率(Precision)=TP/(TP+FP)

查全率(Recall)=TP/(TP+FN)

 F1_score=2PR/(P+R)

注:P-Precision,R-Recall,F1_score指标综合了P和R的产出结果。取值范围[0,1],取值越大表示模型越好

 

三  补充 AUC

AUC(Area Under Curve):

ROC曲线与X轴围成的面积,很多时候用AUC值作为算法好坏的评判标准。面积越大,表示分类性能越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值