数据挖掘能做什么

数据挖掘不仅能对过去的数据进行查询和遍历,并且能够对将来的趋势和行为进行预测,并自动探测以前未发现的模式,从而很好地支持人们的决策。被挖掘出来的信息,能够用于信息管理、查询处理、决策支持、过程控制以及许多其它应用。数据挖掘按其功能划分主要包括以下几类:
    (1) 分类

    分类是数据挖掘中应用的最多的方法。分类是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,一般用规则或决策树模式表示。一个类的内涵描述分为特征性描述和区别性描述。特征性描述是对类中对象的共同特征的描述,区别性描述是对两个或多个类之间区别的描述。

    (2) 关联分析

    若两个或多个数据项的取值重复出现且概率很高时,它就存在着某种关联,可以建立起这些数据项的关联规则。关联分析的目的是找出数据库中隐藏的关联网。在大型数据库中,这种关联规则是很多的,一般用“支持度”,“可信度”两个阈值来淘汰那些无用的关联规则。

    (3) 聚类

    数据库中的数据可分为一系列有意义的子集或称为类。在同一类别中,个体之间的距离较小,而不同类别的个体之间的距离偏大。聚类增强了人们对客观现实的认识,即通过聚类建立宏观概念。

    (4)序列模式

    通过时间序列搜索出重复发生概率较高的模式,这里强调时间序列对挖掘结果的影响。

    (5)偏差检验

    数据库中的数据常有一些异常记录,从数据库中检测出这些偏差很有意义。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差、量值随时间的变化等。偏差检测的基本方法是寻找观测结果与参照之间的差别。

    (6) 预测

    预测是利用历史数据找出变化规律,即建立模型,并用此模型来预测未来数据的种类、特征等。

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/chl033/archive/2008/10/19/3102702.aspx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值