2020/3/11 打卡
题目
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
思路
找最短路径的问题,从左上点 到 右下点。
思路 可以使用动态规划的思想,来进行判别路径长度,并进行累计,找到 最短长度的路径。(是最为常用和典型的 一道动态规划题。)
【1】状态定义:设 dp 为大小 m×n 矩阵,其中 dp[i][j]的值代表直到走到 (i,j)的最小路径和。
【2】状态初始化:dp 初始化即可,不需要修改初始 0 值。
【3】状态转移方程 基本形式为:
走到当前单元格 (i,j)的最小路径和=“从左方单元格(i−1,j)与从上方单元格(i,j−1) 走来的两个最小路径和中较小的”+当前单元格值grid[i][j]
具体下来,可以分为四种情况: [非常非常典型的动态规划思路。 很好理解]
(1)当左边和上边都不是矩阵边界时: 即当i != 0,j!=0时,dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
有两种可能性,按照两种情况走过来即可。从上面或者左边走过来。自然走动过来。
(2)当只有左边是矩阵边界时: 只能从上面来,即当i=0,j!=0时, dp[i][j]=dp[i][j−1]+grid[i][j] ; (走在最上边一行时,算从左边过来的)
(3)当只有上边是矩阵边界时: 只能从左面来,即当i!=0,j=0时, dp[i][j]=dp[i−1][j]+grid[i][j] ; (走在最左边一列时,算从上面过来的)
(4)当左边和上边都是矩阵边界时: 即当i=0,j=0时,其实就是起点, dp[i][j]=grid[i][j];
上面算法的 时间复杂度 O(M×N) : 遍历整个 gridgrid 矩阵元素。
空间复杂度 O(1) : 直接修改原矩阵,不使用额外空间
代码
def minpath(grid):
# 这里直接在本身进行调整,所以 本身的grid形式就是 状态的载体。 grid有长宽 非正方形的(i是行,j是列)
for i in range(len(grid)):
for j in range(len(grid[0])):
# 对于 网格中的每个位置,进行如下的 状态转移上的操作
# (4)如果是起点位置
if i==j==0:
continue
# (2)这个是左边 是矩阵边界的情况(走在最左边一列时)
elif i==0:
grid[i][j]=grid[i][j-1]+grid[i][j]
# (3)这个是 上边 为矩阵边界的情况(走在最上面一行时)
elif j==0:
grid[i][j]=grid[i-1][j]+grid[i][j]
# (1)这个是动态规划中核心 转移部分, 走在中间位置的 状态转移计算情况。
else:
grid[i][j]=min(grid[i-1][j],grid[i][j-1])+grid[i][j]
# 最终返回 目标状态位置即可
return grid[-1][-1]