leetcode 题目64 最小路径和

 2020/3/11  打卡

题目

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

    示例:
      输入:
      [
        [1,3,1],
        [1,5,1],
        [4,2,1]
      ]
      输出: 7
      解释: 因为路径 1→3→1→1→1 的总和最小。

 

思路

找最短路径的问题,从左上点  到  右下点。

思路 可以使用动态规划的思想,来进行判别路径长度,并进行累计,找到 最短长度的路径。(是最为常用和典型的 一道动态规划题。)
 
 【1】状态定义:设 dp 为大小 m×n 矩阵,其中 dp[i][j]的值代表直到走到 (i,j)的最小路径和。
 
 【2】状态初始化:dp 初始化即可,不需要修改初始 0 值。
 
 【3】状态转移方程 基本形式为:
 
     走到当前单元格 (i,j)的最小路径和=“从左方单元格(i−1,j)与从上方单元格(i,j−1) 走来的两个最小路径和中较小的”+当前单元格值grid[i][j]
 
 具体下来,可以分为四种情况:  [非常非常典型的动态规划思路。 很好理解]
     (1)当左边和上边都不是矩阵边界时: 即当i != 0,j!=0时,dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            有两种可能性,按照两种情况走过来即可。从上面或者左边走过来。自然走动过来。
     (2)当只有左边是矩阵边界时: 只能从上面来,即当i=0,j!=0时, dp[i][j]=dp[i][j−1]+grid[i][j] ;  (走在最上边一行时,算从左边过来的)
     (3)当只有上边是矩阵边界时: 只能从左面来,即当i!=0,j=0时, dp[i][j]=dp[i−1][j]+grid[i][j] ;  (走在最左边一列时,算从上面过来的)
     (4)当左边和上边都是矩阵边界时: 即当i=0,j=0时,其实就是起点, dp[i][j]=grid[i][j];         


上面算法的   时间复杂度  O(M×N) : 遍历整个 gridgrid 矩阵元素。
             空间复杂度 O(1) : 直接修改原矩阵,不使用额外空间

代码

def minpath(grid):
    #   这里直接在本身进行调整,所以 本身的grid形式就是 状态的载体。   grid有长宽 非正方形的(i是行,j是列)
    for i in range(len(grid)):
        for j in range(len(grid[0])):
            #  对于  网格中的每个位置,进行如下的 状态转移上的操作

            #  (4)如果是起点位置
            if i==j==0:
                continue

            #  (2)这个是左边  是矩阵边界的情况(走在最左边一列时)
            elif i==0:
                grid[i][j]=grid[i][j-1]+grid[i][j]

            # (3)这个是 上边 为矩阵边界的情况(走在最上面一行时)
            elif j==0:
                grid[i][j]=grid[i-1][j]+grid[i][j]

            # (1)这个是动态规划中核心 转移部分, 走在中间位置的 状态转移计算情况。
            else:
                grid[i][j]=min(grid[i-1][j],grid[i][j-1])+grid[i][j]

    # 最终返回  目标状态位置即可
    return grid[-1][-1]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值