Xgboost模型

一.Xgboost简介

1.Xgboost是大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包之一,比常见的工具包快10倍以上,他是GB方法里的完全加强版本,也是基于残差优化的算法,希望建立K个回归树,使得树群的预测值尽量接近真实值(准确率)而且有尽量大的泛化能力。

2.Xgboost相对于GBDT的优点:        

(1)传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。        

(2)传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。并且xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。        

(3)xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。

(4)列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样(随机取一定的列),不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。      

(5)对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。      

(6)xgboost工具支持并行。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值