
机器学习学习笔记
Marilynmontu
能为自己的梦想锋芒毕露,那也是一种不合群的勇敢。
展开
-
机器学习基础知识——矩阵运算
基本功太太太不扎实了,记录一下看论文里边提到的各种矩阵的乘法相关的操作。1. Hadamard product(哈达玛乘积)1.1 定义若A=(aij)A=(a_{ij})A=(aij)和B=(bij)B=(b_{ij})B=(bij)是两个同阶矩阵,若cij=aij×bijc_{ij}=a_{ij}×b_{ij}cij=aij×bij,则称矩阵C=(cij)C=(c_{ij})C...原创 2020-05-07 16:04:48 · 421 阅读 · 0 评论 -
机器学习基础知识——范数
此文用于记录范数的基础知识,便于后续的查阅与复习,不定期更新。1. Frobenius norm (Frobenius 范数)1.1 定义Frobenius 范数,简称F-范数,是一种矩阵范数,记为∣∣⋅∣∣F||·||_F∣∣⋅∣∣F。矩阵A的Frobenius范数定义为矩阵AAA各项元素的绝对值平方的总和,即∣∣X∣∣F=∑i∑jxi,j2||X||_F=\sqrt{\sum_i\s...原创 2020-05-07 15:40:42 · 967 阅读 · 0 评论 -
GAN学习笔记——KL散度、交叉熵、JS散度
首先,我们知道, 熵 是用来量化数据中含有的信息量的,其计算公式为:H=−∑i=1Np(xi)⋅logp(xi)H=-\sum_{i=1}^{N}p(x_{i})\cdot \log p(x_{i})H=−i=1∑Np(xi)⋅logp(xi)1)KL散度(Kullback–Leibler divergence)又称KL距离,相对熵,用来比较两个概率分布的接近程度。假设 p(x)...原创 2019-04-12 22:53:38 · 3344 阅读 · 0 评论