表情识别
marleylee
每一个不曾起舞的日子,都是对生命的辜负!
展开
-
人脸识别之表情识别(一)--传统方法概述
人类通过视觉、味觉、听觉、嗅觉和触觉五个器官来认识世界。我们把用眼睛观察到的视觉信息叫做图像信息,如人脸的表情信息。一般的表情识别可以用单个感官完成,也可以用多个感官相配合来完成。它是一个整体识别和特征识别共同作用的结果。具体说来,远处辨认人,主要是整体识别,而在近距离面部表情识别中,特征部件识别则更重要。另外,人脸上各部件对识别的贡献也不相同,如眼睛和嘴巴的重要程度大于鼻子。根据对人脑的研究表明...转载 2018-07-28 23:44:04 · 17295 阅读 · 3 评论 -
人脸识别之表情识别(二)--基于CNN分类
说白了,就是个分类任务,但是纯粹的CNN分类,只是对传统方式的提升,本质思路没有改变,效果也不是很明显。转自:https://blog.csdn.net/walilk/article/details/58709611前言 [机器学习] 实验笔记系列是以我在算法研究中的实验笔记资料为基础加以整理推出的。该系列内容涉及常见的机器学习算法理论以及常见的算法应用,每篇博客都会介绍实验相关的数...转载 2018-07-28 23:46:06 · 64113 阅读 · 162 评论 -
人脸识别之表情识别(三)--基于几何与Gabor小波的多层感知
转自:https://zhuanlan.zhihu.com/p/24483573 (我真的是信了里面几个重要信息点,红色标注,张友正大神。。。)人脸表情识别(FER)作为智能化人机交互技术中的一个重要组成部分,近年来得到了广泛的关注,涌现出许多新方法。人脸表情识别(FER)系统由人脸检测、表情特征提取和表情分类组成。1.基于特征的面部表情识别张正友博士分享了两种人脸特征识别方法:置信点集...转载 2018-07-28 23:47:20 · 4803 阅读 · 1 评论 -
人脸识别之表情识别(四)--多网络级联表情识别
EmotiW2015比赛静态表情识别的亚军,采用的方法为cnn的级联,人脸检测方面也采用了当时3种算法的共同检测,通过在FER2013数据库上进行模型预训练,并在SFEW2.0(比赛数据)上fine-tune,从而在比赛的验证集和测试集上取得55.96%和61.29%的准确率,远远超过比赛的baseline(35.96%,39.13%)。 作者本文主要贡献如下: 1.实现了CNN架构,在...转载 2018-07-28 23:48:18 · 2345 阅读 · 0 评论 -
人脸识别之表情识别(五)--MBP+CNN
转自:https://blog.csdn.net/app_12062011/article/details/80482048EmotiW 2015 LBP特征输入到CNN模型中,并经过特殊映射,得到高于基线15%的性能提升。作者采用了:4个cnn模型VGG S,VGG M-2048,VGG M-4096和GoogleNet 5种不同特征作为CNN输入 (RGB, LBP,以及作者额外...转载 2018-07-28 23:49:43 · 1624 阅读 · 0 评论 -
人脸识别之表情识别(六)--局部特征学习和Handcrafted特征结合
转自:https://blog.csdn.net/app_12062011/article/details/80484254论文《Local Learning with Deep and Handcrafted Features for Facial Expression Recognition》作者基于局部特征学习和手工特征,集成模型(BOVW)的方式,在FER2013上达到75.42%...转载 2018-07-28 23:51:02 · 4961 阅读 · 0 评论 -
人脸识别之表情识别(七)--面部表情识别阶段综述
转自:https://blog.csdn.net/app_12062011/article/details/80504960本文主要参考论文《Deep Facial Expression Recognition: A Survey》 首先我们来了解一下表情识别的相关背景知识以及发展近况。人脸表情是最直接、最有效的情感识别模式。它有很多人机交互方面的应用,例如疲劳驾驶检测和手机端实时表情识...转载 2018-07-28 23:53:14 · 41364 阅读 · 3 评论