人脸识别之人脸检测(七)--LBP特征原理及实现

本文详细介绍LBP(局部二值模式)算法,包括其灰度级不变性和旋转不变性特点,以及如何应用于图像纹理特征提取。文章还介绍了LBP算子的不同变体,如圆形LBP算子和旋转不变LBP算子,并探讨了如何通过使用等价模式减少模式种类。此外,文中还阐述了如何利用LBP特征进行图像检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:https://blog.csdn.net/app_12062011/article/details/50678658

主要依据这篇文章总结,但是有些地方,个人感觉理解有偏差,特此做备注。

http://blog.csdn.net/zouxy09/article/details/7929531

 

        LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度级不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;

1、LBP特征的描述

该特征用图像的局部领域的联合分布T 来描述图像的纹理特征,如果假设局部邻域中像素个数为P(P >1),那么纹理特征的联合分布T 可以表述成:

其中, c g 表示相应局部邻域的中心像素的灰度值, gp 表示以中心像素圆心,以R为半径的圆上的像素的灰度值。

灰度级不变:

假设中心像素和局部邻域像素相互独立,那么这里可以将上面定义式写成如下形式:

其中t(gc)决定了局部区域的整体亮度,对于纹理特征,可以忽略这一项,最终得到:

上式说明,将纹理特征定义为邻域像素和中心像素的差的联合分布函数,因为gp − gc是基本不受亮度均值影响的,所以从上式可以看出,此时统计量T 是一个跟亮度均值,即灰度级无关的值。

最后定义特征函数如下:

定义灰度级不变LBP为:

即二进制编码公式。

以下是通俗点的解释:

      原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:

 

圆形LBP算子

        基本的 LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度级和旋转不变性的要求,Ojala等对 LBP算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP算子允许在半径为 R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

 

LBP旋转不变模式

       从 LBP 的定义可以看出,LBP 算子是灰度级不变的,但却不是旋转不变的。图像的旋转就会得到不同的 LBP值。

         Maenpaa等人又将 LBP算子进行了扩展,提出了具有旋转不变性的 LBP算子,即不断旋转圆形邻域得到一系列初始定义的 LBP值,取其最小值作为该邻域的 LBP值。

       图 2.5 给出了求取旋转不变的 LBP 的过程示意图,图中算子下方的数字表示该算子对应的 LBP值,图中所示的 8种 LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的 LBP值为 15。也就是说,图中的 8种 LBP模式对应的旋转不变的 LBP模式都是 00001111。

即定义:

其中,ROR(x,i)表示将二进制特征x,循环右移i次

LBP等价模式

       一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生P2种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。

        为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)

       通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。

正式定义如下:

其中,,即顺时针方向每个局部领域像素的LBP二进制得变化次数。

 

2、LBP特征用于检测的原理

       显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。

        LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。

       因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;

        例如:一幅100*100像素大小的图片,划分为10*10=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为10*10像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有10*10个子区域,也就有了10*10个统计直方图,利用这10*10个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;

 

3、对LBP特征向量进行提取的步骤

(1)首先将检测窗口划分为16×16的小区域(cell);

(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;

(3)然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。

(4)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;

然后便可利用SVM或者其他机器学习算法进行分类了。

 

Reference:

黄非非,基于 LBP 的人脸识别研究,重庆大学硕士学位论文,2009.5

随着计算机和信息技术的快速发展,人脸识别技术越来越受到重视,本文主要研究人脸在不同光照、不同表情下的特征提取与识别的一些关键问题,提出了一些改进方法,并通过实验进行了可靠性验证. 针对LBP算法提取人脸图像的表情特征信息时会丢失特殊的特征信息的缺点,本文提出了多重局部二值模式的人脸表情识别方法(Multiple Local Binary Patterns,MILBP),该方法在保持LBP算法优点的前提下,通过增加一位二值编码,利用中心像素点作用以及邻域像素点灰度值之间的关系,得出特征向量图. 实验结果表明MLBP算法LBP算法描述的表情纹理图像更加均匀,且识别率约提高10%. 针对人脸表情图像进行纹理特征提取时的模块大小划分问题,本文提出将MLBP算法与Harr小波分解相结合,该方法首先将表情图像进行Har小波分解,得到四幅不同频率的子图像,然后对其中三幅图像进行MLBP特征提取,并将得到的特征值串联形成表情图像的特征向量。实验结果表明该方法比MLBP方法直接提取表情特征所产生的特征向量的维数减少了25%,特征提取和识别的速率提高了,其中识别率约提高了9%. 人脸识别研究中的识别率容易受光照强度的影响,针对MLBP算法在光照变化时具有旋转不变性,以及Gabor小波能提供空间位置、空间频率的特性,本文提出了多重局部Gabor二值模式方法(Multiple Local Gabor Binary Pattern,M LGBP),该方法先对人脸图像使用Gabor小波进行变换处理,保留受光照影响较小的高频部分,然后再采用MLBP算法对Gabor提取后的图像采用分块编码,最后得到联合直方图序列,获得丰富的局部特征信息,实验结果表明了该算法有效的降低了光照对识别率的影响,提高了光照不均匀时的人险识别率,且在特征提取方面比Gabor等算法更加有效.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值