图象分割

  要:图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题。本文回顾和总结了一些存在的图象分割方法。从原理、应用和应用效果上对经典的图象分割方法如域值分割技术、区域增长和边缘检测等进行了分析,同时对目前图象分割领域中新的技术如分形、数学形态和神经网络技术进行了讨论。分析了图象分割技术研究的方向,需要解决的问题,提出了作者的观点。 

    图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤[1]。图象分割应用在许多方面[1],例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结果很大程度上依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割[2]。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果[2],原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统[1]。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。

1 经典的图象分割方法

 

1.1阈值分割方法

域值分割技术是经典的、流行的图象分割方法之一,也是最简单的一种图象分割方法,这种方法的关键在于寻找适当的灰度域值。通常是根据图象的灰度直方图来选取。阈值分割可以通过全局的信息如整个图象的灰度直方图,或者局部信息如灰度共生矩阵实现。如果在整个图象中只使用一个阈值,则这种方法叫做全局阈值法。反之,如果这个图象被分割成几个区域,针对每一个区域均有一个阈值,则这种方法叫做局部阈值法。一些学者认为也可以把阈值分割技术分为单阈值法和多阈值法。在单阈值法中,整个图象分成两个区域,即目标对象(黑色)和背景(白色);当整个图象由几个带有不同表面特征的对象组成时(对于强度图象,表示具有不同灰度值的目标)需要几个不同的阈值,这就是多阈值法。在这种情况下,我们的目的是获得一个阈值集合(t1,t2, ,tk ),使得所有灰度值满足f(x,y)[ti,ti+1] 象素点构成第i个区域,其中(i=0,1, ,k)。阈值分割法,也可以看成是一个分类问题,比如阈值分割中,相当于把所有象素点分成两类:目标和背景。

1.2区域增长技术

域值分割技术是一种简单的图象分割技术,它仅适用于高反差的简单图象的分割,不能满足灰度渐变或以某种纹理而不是灰度来表征不同区域的那些复杂图象的分割。区域增长是一种已受到人工智能领域中的计算机视觉十分关注的图象分割方法。特别适合于分割纹理图象,即可以用灰度与局部特征值信息进行简单的聚类分类,也可以用统计均匀性检测进行复杂的分裂与合并处理。这种方法是把一幅图象分成许多小区域开始的。这些初始的小区域可能是小的邻域甚至是单个象素。在每个区域中,通过计算能反映一个物体内象素一致性的特征,作为区域合并的判断标准。这些用于区分不同物体内象素一致性的特征包括平均灰度值,纹理,或者颜色信息等。区域合并的第一步是赋给每个区域一组参数,即特征。这些参数能够反映区域属于哪个物体。接下来对相邻区域的所有边界进行考查。相邻区域的特征值之间的差异是计算边界强度的一个尺度。如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。因此区域合并是一个迭代过程,每一步重新计算被扩大区域的物体内各象素一致性的特征并消除弱边界。没有可以消除的弱边界时,区域合并过程结束。这时,图像分割也就完成。这个过程使人感觉这是一个物体内部的区域不断增长直到其边界对应于物体的真正边界为止的“生长”过程。

1.3边缘检测方法

图象分割能够通过检测不同区域的边缘来获得。对于强度图象,边缘的定义是指那些强度发生突变的点。由边缘的定义可知边缘是图象的局部特征,因此决定某个象素点是否是边缘只需要局部信息。Davis[4]把边缘检测技术分成两类:串行技术和并行技术。所谓串行技术是指,判断当前点是否是边缘,依赖于边缘检测算子对前一点判断的结果;所谓并行技术是指,决定当前点是否是边缘,只依赖于当前点及其邻域

点。因此,在采用并行运算时,边缘检测算子可以同时作用于该图象的每一个象素。而串行运算的结果依赖于开始点的选择和前一点决定下一点采用的方法。常见的边缘检测方法有差分法和模板匹配法。所谓差分法是指数学上用离散函数的数值计算方法对连续函数微分运算的一种近似。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。对于阶梯状边缘可以用梯度下降算子、RobertsPrewittSobel等一阶差分算子得到差分值,这些不同的算子可以检测出图象灰度值或者平均灰度值的变化。对于脉冲状边缘,可用二阶差分算子如Laplacian等得到差分值。Laplacian算子特点是:对于灰度值变化呈阶梯状时,有一个过零点。因此,对于角点,线,孤立点的检测效果很好。但是,如果图象存在较严重的噪声,则效果不是十分理想。

    通常,一个性能良好的边缘检测算子应该是具有以下两个特征的滤波器:首先,必须是一个微分算子,即一阶或者二阶微分。其次,算子大小能够随意缩放,以便于用较大的算子检测边缘,而用较小的算子检测细节特征。由MarrHildreth[5]提出的拉普拉斯高斯算子(Laplacian of Gaussian,简称LG)就是能满足上述两个特征要求的典型的边缘检测算子,通常表示为:2G,其中G由下式表示:

这是一个标准的高斯分布(Gausian)σ表示标准方差。LG算子的高斯(Gausian)部分,相当于低通滤波器,可以消除比标准方差σ小的多的细节特征,从而使图象变得模糊。而LG算子的拉普拉斯部分,相当于高通滤波器,可以使图象轮廓增强。因此,LG算子是先消除噪声,然后使图象轮廓锐化,从而达到边缘检测的目的。

Canny[6]认为,一个性能良好的边缘检测算子应该具有如下三个特征:①把非边缘点标记为边缘点的概率低,同时不能标记真正边缘点的概率较低; ②被标记为边缘点的象素点应该尽量靠近真正边缘的中央;③边缘检测算子作用的结果有且只有一个象素点被标记为边缘点。一个性能良好的边缘检测器可以通过如下方式获得:①使图象信噪比SNR最大化;②为了准确定位边缘点,Canny使标记的边缘点与真实边缘中央的距离的均方根(Root Mean Square, RMS)的估计值的倒数最大化。为了同时使检测性能指标和定位标准均达到最大,Canny认为SNR与边缘点位移的估计值的标准方差的倒数的乘积达到最大。

2 图象分割技术的发展 

2.1 基于分形的图象分割技术

基于特征的图象分割方法包括两个重要的部分:特征抽取与模式聚类。特征提取是图象分割最重要的问题之一,能否抽取出有效的特征值对分割结果有很大的影响,如果没有好的特征值,分类方法再好也无法获得理想的结果。特征抽取大致可以分为三类[7],即基于特征、基于模型以及基于结构。基于特征的方法就是寻找具有相同特性的区域或区域边界,基于模型的方法就是假设一个基本的随机过程并用过程参数作为特征。由于模型参数也可用作纹理特征,基于模型的方法可看成是基于特征方法的一个子集。结构特征基于假设图象中有可检测的基本结构元素并按一定的规则排列。

基于模型的方法最典型的模型主要有两种:分形几何模型与随机模型。分形函数近年来受到越来越多的重视。分形是B.B.Mandelbrot在总结了自然界中的非规整几何图形后,于1975年第一次提出了分形的概念。Mandelbrot给分形的定义为:设的豪斯道夫维数是D,如果这个维数恒大于集合A的拓扑维数Dt,则称集合A是分形集,简称分形。上述定义没有其他任何条件要求。1986年,Mandelbrot又给出了分形的第二个定义:组成部分与整体以某种相似的形叫做分形。这个定义突出了相似性的作用,反映了自然界中很广泛一类物体的基本属性;局部与局部,局部与整体在形态、功能、信息、时间与空间等方面具有统计意义上的相似性。简单地说分形就是一个维数大于拓扑维数的集合。分形维数的一大特点是尺度变换不变性。分形几何学已经广泛应用于图象压缩和图象编码,并且取得了较好的效果。同时也有一些研究者将分形特征用于自然纹理图象和自然景物的分割与识别中。分形维数特征对图象尺度变换不敏感,与人对物体表面粗糙度的判断有很大的相关性,由于许多自然纹理都具有线形对数功率谱,而分形维数就对应于这种线形对数功率谱斜率的估计值,因而用分形维数描述自然纹理有一定的合理性。

2.2 基于神经网络的图象分割技术

使用神经网络模型可以实现图象分割算法。Blanz and Gish[13]使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。由于BP网络能完成n维空间(输入节点数为n)到m维空间(输出节点数m)的复杂非线形映射,因此它具有Laplacian算子的能力,用神经网络可以获得良好的结果,而且用神经网络处理,一旦训练完毕,各节点间的互联权就完全确定,在识别时具有很快的速度。Babaguchi[14]等使用多层BP神经网络,用于阈值分割图象,输入是统计直方图,输出是想要的阈值。使用这种方法,在神经网络学习阶段需要大量的已知阈值的样本图象,以用于调节网络参数产生合适的输出。但在实际应用中,要获得大量的样本图象是十分困难的。M.Liang借助于松弛标记技术与人工神经网络的有关理论,提出了一种用Kohonen网络作从网络粗分的主从神经网络分割方法[15],从网络的分割结果用于确定主网络中各神经元的初始状态,然后主网络从这一初始状态出发进行状态的动态演变,直至收敛到主网络的某一吸引子,这时主网络的状态对应于分割后的图象。这种方法能够分割低信噪比条件下图象,实验证明它比最佳鉴别门限准则门限分割法与矩阵保持门限分割法具有更好的效果,并且可以实现实时处理。类似的用于从高度噪声破坏的景物中提取对象的方法还可以使用Hopfield类型神经网络。

3 图象分割中需要解决的问题和发展前景

 

选择一种合适的图象分割方法,很大程度上取决于要处理的图象类型和应用的领域。至今还没有哪一种图象分割算法是通用的,也难以获得一种最佳的特征表示方法。此外,窗口大小的选取和算法的自适应性也是分割算法不可能满足所有图象的分割要求的重要原因。目前图象分割领域还存在许多迫切需要解决的问题:(1)虽然计算机的处理速度有了迅猛提高,但是由于图象处理十分复杂,运算量普遍较大,特别是对于一些实时系统,工作环境比较恶劣,图象采集时照明采光不好,使得图象噪声比较严重,处理速度对于整个系统至关重要。因此研究具有良好抗噪性能、工作稳定、采用并行算法的图象分割方法具有重要的现实意义。(2)如何对分割结果进行客观定量的评估。这对于自动视觉系统特别是工业计算机视觉检测系统是十分重要的,因为决策是自动进行的,不依赖于人工的交互完成。(3)开发一种通用的图象分割方法,可以应用到各种类型的图象。另外性能良好的边缘辨识也是一个十分重要的课题。总之,随着对人类视觉系统的深入理解和计算机视觉技术的成熟和发展,不断吸收一些新的思想和技术,上述问题都能得到满意的解决。

 

参考文献

[1]. 边肇祺等.模式识别.清华大学出版社,19886月第1

[2]. S.D.Yanowitz,A.M.Bruckstein.A new method for image segmentation.Computer Vision,Graphics,

   and Image Processing,1989,46:8295

[3]. Skolnik. Mathematical Morphology. CVGIP,1986,35:281282

[4]. Dougherty ER. Introduction to Mathematical Morphology. SPIE Optical Engineering Press,1992

[5].Boire JY.et al.Proc Ann Int Conf IEEE Eng Med Biol Soc.1990:421422

[6] .Higgins WE.et al.IEEE Transactions on Medical Imaging,1990.19(8):384395

[7].Acharya RS.et  al.Proc of SPIE,1991,1652:5061

[8].N.Babaguchi.K,Yamada.K,Kise and T.Tezuka. Connectionist model binarization,Proc.10th.ICPR,1990:5156

[9].M.Liang,Z.K.Sun. A neural network model for image segmentation. ICAI & NN92,Switzerland.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值