G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and QuestionAnswering笔记

论文链接:https://arxiv.org/abs/2402.07630

GitHub链接:https://github.com/XiaoxinHe/G-Retriever

读不完啊读不完,论文是一点都读不完。今天这篇文章看着有点子意思,之前的RAG都还是围绕文档数据,今天这篇文章已经换成了具有文本属性的图结构数据。作者是这么描述的:we enable users to ‘chat with their graph’: that is, to ask questions about the graph using a conversational interface. 对于用户的提问,G-retriever可以用文本的形式回复并且告诉用户图里相关的部分。据本文作者所言,他们的这个模型能够应用在:scene graph understanding, common sense reasoning, and knowledge graph reasoning。下图是文章给出的三种应用场景的例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值