一文速学数模-时序预测模型(二)平稳时间序列预测算法和自回归模型(AR)详解+Python代码实现

本文深入探讨了平稳时间序列预测算法,包括时间序列的分布、均值、协方差函数和自相关函数。重点介绍了自回归模型(AR)的概念,建模步骤,以及如何通过Python进行实现。文章还提到了模型判定和白噪声序列的重要性,并提供了相关案例和资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、平稳时间序列预测算法

1.时间序列的分布、均值和协方差函数

概率分布

均值函数

自协方差函数

自相关函数

2.平稳序列的自协方差和自相关函数

自协方差函数

自相关函数

平稳序列的自协方差序列和自相关函数列的性质

3.严平稳时间序列

4.宽平稳时间序列

5.联系和区别

联系

区别

6.白噪声序列

定义

7.独立同分布序列

定义

二、自回归模型(Autoregressive model,简称AR)

定义

建模步骤

第一步:

第二步:

第三步:

第四步:

模型判定

案例实现

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

参阅



前言

平滑法花费了将近一个月的时间去讲解和模拟算法,讲解的非常详细了我个人认为,而且代码和原理理解起来也相对简单,代码实现起来也几乎没有什么难度。若是没有大家想要详细了解或者掌握时间序列分析算法的建议可以订阅本人专栏:一文速学-数学建模常用模型。里面涉及到各个场景的分析和预测模型基本都具备了,其中平滑法的所有方法:

都包含其中。接下来我们要对平稳时间序列预测算法进行研究和推导。但是平稳时间序列预测算法的基础理论还是蛮多蛮复杂的,需要我们对基础理论有了一定认知才能更轻松的掌握该算法。故我们的开篇第一章先将理论知识全部了解一遍。

希望读者看完能够在评论区提出错误或者看法,博主会长期维护博客做及时更新。</

评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值