Prompt提示工程上手指南:基础原理及实践-思维树 (ToT)策略下的Prompt

本文介绍了思维树(ToT)框架,一种用于提升通用语言模型解决问题能力的技术。它扩展了传统的CoT,通过树状结构表示语义信息,使AI能够深思熟虑并生成多样化的答案。文章详细阐述了ToT的工作原理,包括树构建、路径选择和信息整合,以及其在实验中的表现和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

此篇文章已经是本系列的第五篇文章,之前我们已经将检索增强生成(RAG)策略,逐渐我们掌握的知识和技术都在不断提高,对于Prompt的技巧策略也不能只局限于局部运用而要适应LLM大模型的整体框架去进行改进休整。较为主流的LLM模型框架设计基于链式思考(CoT)、思维树 (ToT)和检索增强生成 (RAG)这三大框架我们现在要开始了解学习思维树 (ToT)。

如何建立一个[解决通用问题的语言模型]?如何能够让LLM能够深思熟虑的解决问题?我们人类通过搜索一个组合式问题空间来解决问题。这可以看作一棵树,其中节点表示部分解,分支对应修改它们的运算符。选择哪个分支是由启发式决定的,这些启发式帮助导航问题空间并引导问题解决者朝着解决方案的方向前进。正因如此思维树(ToT)可以被视为一种进化版的提示(prompt)策略,它扩展了这一概念并引入了更加复杂的思维结构,以更好地引导模型生成准确、连贯的输出。

博主承诺每篇文章我都会尽可能将简化涉及到垂直领域的专业知识,转化为大众小白可以读懂易于理解的知识,将繁杂的程序创建步骤逐个拆解,以逐步递进的方式由难转易逐渐掌握并实践,欢迎各位学习者关注博主,博主将不断创作技术实用前沿文章。

何为思维树 (ToT)?如何让AI"深思熟虑"?

想象一下你正在

<think>好的,我现在要处理用户关于AI大模型应用开发学习路线的问题。首先,我需要回顾用户提供的引用内容,确保回答准确。引用1提到需要扎实的基础知识、系统学习路线和持续实践。引用2和3讨论了从设计到部署的全流程,以及分阶段的学习计划。引用4强调了从大模型接口和Prompt工程开始的学习步骤。 用户的需求是了解学习路线图,所以需要分阶段、结构清晰地呈现。首先,我应该从基础知识开始,包括数学和编程基础,接着是大模型理论,然后是接口使用和Prompt工程,再到应用开发框架,最后是部署和优化。每个阶段需要具体的时间安排和关键内容,例如Python编程、深度学习框架、Transformer架构等。 同时,用户示例中的快速排序回答结构值得参考,使用分点说明和代码示例。但这里可能需要调整,用项目示例代替代码,比如构建对话系统或知识库应用。此外,用户希望生成相关问题,我需要考虑相关的问题,比如数学基础的重要性、Prompt工程的学习资源、选择哪种框架等。 需要确保回答符合系统级指令:使用正确的中文和LaTeX格式,引用标识自然添加。例如,在提到Transformer架构时,可以引用[^3]中的阶段一内容。同时,避免使用Markdown,保持段落简洁。 最后,检查是否覆盖了所有关键点,并确保引用正确。比如,引用[^4]提到从接口开始学习,所以在阶段二中要明确这一点。阶段三的Prompt工程对应引用[^4]的第二步。项目实战部分可以参考引用[^2]的实战营内容。总结时,强调持续学习和实践,呼应引用[^1]的内容。</think>### AI大模型应用开发学习路线图 #### 一、基础准备阶段(1-2个月) 1. **数学与编程基础** - 线性代数:矩阵运算($A \cdot B = C$)、特征值分解 - 概率统计:贝叶斯定理($P(A|B) = \frac{P(B|A)P(A)}{P(B)}$) - Python编程:掌握Numpy/Pandas/Pytorch框架 ```python import torch model = torch.nn.Transformer() # Transformer模型基础实现 ``` 2. **深度学习基础** - 神经网络原理:前向传播($y = \sigma(Wx + b)$) - 自然语言处理:词嵌入($e_{word} \in \mathbb{R}^{d}$) - 学习资源:吴恩达《深度学习专项课程》[^1] #### 二、大模型核心技术阶段(3-4个月) 1. **大模型接口开发** - 掌握OpenAI API调用(如GPT-3.5/4) - 学习文心一言、智谱API等国产接口[^4] ```python from openai import OpenAI client = OpenAI() response = client.chat.completions.create(model="gpt-3.5-turbo", messages=[...]) ``` 2. **Prompt工程体系** - 设计原则:角色定义+任务描述+格式约束 - 高级技巧:思维链(CoT)、思维树ToT)[^3] - 代码示例:知识增强型Prompt ```python prompt = """你是一名医学专家,根据以下研究文献: [文献内容]... 请用JSON格式输出症状分析""" ``` #### 三、应用开发阶段(2-3个月) 1. **开发框架实践** - LangChain:构建AI工作流 $$ \text{Chain} = \text{PromptTemplate} \rightarrow \text{LLM} \rightarrow \text{OutputParser} $$ - LlamaIndex:实现私有数据检索[^2] 2. **工程化能力培养** - 模型微调:LoRA/P-Tuning方法 - 性能优化:量化压缩(FP16→INT8) - 部署方案:Docker+FastAPI+云服务 #### 四、项目实战阶段(持续迭代) 1. **典型项目示例** - 智能对话系统(包含意图识别模块) - 企业知识库问答(RAG架构) - 自动化报告生成(多模态输出) 2. **前沿技术追踪** - Agent开发:ReAct框架 - 多模态应用:GPT-4V、Stable Diffusion集成 - 伦理安全:内容过滤($f_{filter}(x) \rightarrow \{0,1\}$)
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值