独立任务最优调度问题

本文内容遵从CC版权协议 转载请注明出自:    http://blog.csdn.net/masterluo

用2 台处理机A 和B 处理n 个作业。设第i 个作业交给机器A 处理时需要时间a[i],若由机器B 来处理,则需要时间b[i] 。由于各作业的特点和机器的性能关系,很可能对于某些i,有a[i] > b[i] ,而对于某些j,j≠i,有a[j] < b[j] 。既不能将一个作业分开由2 台机器处理,也没有一台机器能同时处理2 个作业。设计一个动态规划算法,使得这2 台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总时间)。研究一个实例:(a1,a2,a3,a4)=(2,5,7,10);(b1,b2,b3,b4)=(3,8,4,11)。对于给定的2 台处理机A 和B处理n 个作业,找出一个最优调度方案,使2台机器处理完这n 个作业的时间最短。

先给一个比较容易理解的状态转移方程:
用布尔量p(i,j,k)表示前k个任务可由A机在i时间内且B机在j时间内完成。易得:p(i,j,k) = p(i-ak, j, k-1) | p(i, j-bk, k-1).最优结果为p(i,j,n) = true 且 min(max(i, j))。这样表示有两个缺点:一是空间开销大,二是时间花销多。

今天上计算机安全学的时候一直在想怎么样把复杂度压缩下来。突破口当然还是i,j下标这个地方,p(i,j,k)表示前k个任务可由A机在i时间内且B机在j时间内完成,如果将其改为int类型,记录的是另一个数组的完成时间,这样就可以降到二维。假设第一维i保留,我们可以用p(i,k)表示前k个任务可由A在i时间内且B在p(i,k)时间内完成。

递推方程也容易修改了:第k个任务是由第k-1个任务推出来的,那么第k个任务可由A或B机完成:
如果由A机完成,则有:p(i + ak, k) = p(i, k - 1) (B机时间不变)
如果由B机完成,则有:p(i, k) = p(i, k - 1) + bk (A机时间不变)

综上分析可得p(i, k) = min( p(i, k – 1) + bk, p(i – ak, k – 1) ). 复杂度为O(n * sigm(ai))。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

//最大任务数量
#define MAXN 201
//全部在A机器上运行的最大时间上限
#define MAXTIME 10001

int p [ MAXTIME ][ MAXN ];

int ai [ MAXN ], bi [ MAXN ];

int n;

int task( int n) {
    int sum = 0;
    for( int i = 0; i <= sum; ++ i) {
        p [ i ][ 0 ] = 0;
    }
    for( int k = 1; k <= n; ++ k) {
        sum += ai [ k ];
        for( int j = 0; j <= sum; ++ j) {
            p [ j ][ k ] = p [ j ][ k - 1 ] + bi [ k ];
            if( j >= ai [ k ]) {
                p [ j ][ k ] = min(p [ j ][ k ], p [ j - ai [ k ]][ k - 1 ]);
            }
        }
    }
    int ret = sum + 2;
    for( int i = 1; i <= sum; ++ i) {
        ret = min( ret , max(p [ i ][n ], i));
    }
    return ret;
}

int main() {
    scanf( "%d" , &n);
    for( int i = 1; i <= n; ++ i) {
        scanf( "%d" , & ai [ i ]);
    }
    for( int i = 1; i <= n; ++ i) {
        scanf( "%d" , & bi [ i ]);
    }
   

    int ans = task(n);
    printf( "%d /n " , ans);

    return 0;
}
这是一个经典的动态规划问题,可以使用C语言实现。以下是一种可能的解决方案: 1. 定义状态:f(i,j)表示前i个任务放在j张加密卡上的最小花费。 2. 状态转移方程:考虑第i个任务,它可以独立放在一张加密卡上,也可以与前面的任务一起放在一张加密卡上。因此,有以下两种情况: 1) 第i个任务独立放在一张加密卡上,那么前i-1个任务需要放在j-1张加密卡上,此状态转移方程为: f(i, j) = min(f(i-1, j), f(i-1, j-1)) + cost(i) 2) 第i个任务与前面的任务一起放在一张加密卡上,那么前i-1个任务需要放在j张加密卡上,此状态转移方程为: f(i, j) = f(i-1, j) + cost(i) 其中,cost(i)表示第i个任务的花费。 3. 边界条件:当i=1,只需要考虑前1个任务放在1张加密卡上的情况,即f(1,1)=cost(1)。当j=1,只能将前i个任务都放在1张加密卡上,即f(i,1)=f(i-1,1)+cost(i)。 4. 最终答案:最小花费为min(f(n,1), f(n,2), f(n,3), f(n,4)),其中n为总任务数。 下面是C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> #define MAX_TASKS 100 #define MAX_CARDS 4 int min(int a, int b) { return a < b ? a : b; } int main() { int n, i, j, k, cost[MAX_TASKS + 1], f[MAX_TASKS + 1][MAX_CARDS + 1]; // 读入任务数和每个任务的花费 scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &cost[i]); } // 初始化边界条件 for (i = 1; i <= n; i++) { f[i][1] = f[i-1][1] + cost[i]; } for (j = 1; j <= MAX_CARDS; j++) { f[1][j] = cost[1]; } // 动态规划求解 for (i = 2; i <= n; i++) { for (j = 2; j <= MAX_CARDS; j++) { f[i][j] = f[i-1][j] + cost[i]; for (k = 1; k < i; k++) { f[i][j] = min(f[i][j], f[k][j-1] + cost[i]); } } } // 输出最小花费 int ans = f[n][1]; for (j = 2; j <= MAX_CARDS; j++) { ans = min(ans, f[n][j]); } printf("%d\n", ans); return 0; } ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值