机器学习10:集成学习

集成学习

bagging

原理

算法实现

# 导入算法包以及数据集
from sklearn import neighbors
from sklearn import datasets
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

iris = datasets.load_iris()

x_data = iris.data[:,:2]
y_data = iris.target

x_train,x_test,y_train,y_test = train_test_split(x_data, y_data)

knn = neighbors.KNeighborsClassifier()
knn.fit(x_train, y_train)

#画图函数
def plot(model):
    # 获取数据值所在的范围
    x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
    y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

    # 生成网格矩阵
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))

    z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
    z = z.reshape(xx.shape)
    # 等高线图
    cs = plt.contourf(xx, yy, z)
# 画图
plot(knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
# 准确率
knn.score(x_test, y_test)

在这里插入图片描述

dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
# 画图
plot(dtree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
# 准确率
dtree.score(x_test, y_test)

在这里插入图片描述

bagging_knn = BaggingClassifier(knn, n_estimators=100)  #做100次有放回的抽样,训练100次分类器,投票选取最好的预测结果
# 输入数据建立模型
bagging_knn.fit(x_train, y_train)
plot(bagging_knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
bagging_knn.score(x_test, y_test)

在这里插入图片描述

bagging_tree = BaggingClassifier(dtree, n_estimators=100)
# 输入数据建立模型
bagging_tree.fit(x_train, y_train)
plot(bagging_tree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
bagging_tree.score(x_test, y_test)

在这里插入图片描述

随机森林(Random Forest)

原理

1.样本的随机:从样本集中用bagging的方式,随机选择n个样本。
2.特征的随机:从所有属性d中随机选择k个属性(k<d),然后从k个属性中选择最佳分割属性作为节点建立CART决策树。
3.重复以上两个步骤m次,建立m棵CART决策树。
4.这m棵CART决策树形成随机森林,通过投票表决结果,决定数据属于哪一类。

算法实现

from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier  #随机森林
import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("LR-testSet2.txt", delimiter=",")
x_data = data[:,:-1]
y_data = data[:,-1]

plt.scatter(x_data[:,0],x_data[:,1],c=y_data)
plt.show()

在这里插入图片描述

x_train,x_test,y_train,y_test = train_test_split(x_data, y_data, test_size = 0.5)
def plot(model):
    # 获取数据值所在的范围
    x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
    y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

    # 生成网格矩阵
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))

    z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
    z = z.reshape(xx.shape)
    # 等高线图
    cs = plt.contourf(xx, yy, z)
    # 样本散点图
    plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test)
    plt.show()


dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
plot(dtree)
dtree.score(x_test, y_test)

在这里插入图片描述0.6949152542372882

RF = RandomForestClassifier(n_estimators=50)  #50个bagging 50个决策树
RF.fit(x_train, y_train)
plot(RF)
RF.score(x_test, y_test)

在这里插入图片描述

0.7796610169491526

boosting

原理

AdaBoost是英文“Adaptive Boosting”(自适应增强)的缩写,它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数才确定最终的强分类器。

Adaboost算法可以简述为三个步骤:

(1)首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N。
(2)然后,训练弱分类器hi。具体训练过程中是:如果某个训练样本点,被弱分类器hi准确地分类,那么在构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
(3)最后,将各个训练得到的弱分类器组合成一个强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换而言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

训练过程

算法实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles
from sklearn.metrics import classification_report

# 生成2维正态分布,生成的数据按分位数分为两类,500个样本,2个样本特征
x1, y1 = make_gaussian_quantiles(n_samples=500, n_features=2,n_classes=2)
# 生成2维正态分布,生成的数据按分位数分为两类,400个样本,2个样本特征均值都为3
x2, y2 = make_gaussian_quantiles(mean=(3, 3), n_samples=500, n_features=2, n_classes=2)

# 将两组数据合成一组数据
x_data = np.concatenate((x1, x2))
y_data = np.concatenate((y1, - y2 + 1))
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()

在这里插入图片描述

# 决策树模型
model = tree.DecisionTreeClassifier(max_depth=3)

# 输入数据建立模型
model.fit(x_data, y_data)

# 获取数据值所在的范围
x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()

# 模型准确率
model.score(x_data,y_data)

在这里插入图片描述

0.753

# AdaBoost模型
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),n_estimators=10)
# 训练模型
model.fit(x_data, y_data)

# 获取数据值所在的范围
x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

# 获取预测值
z = model.predict(np.c_[xx.ravel(), yy.ravel()])
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()

# 模型准确率
model.score(x_data,y_data)

在这里插入图片描述0.982

Stacking

原理

算法实现

from sklearn import datasets  
from sklearn import model_selection  
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.tree import DecisionTreeClassifier
from mlxtend.classifier import StackingClassifier # pip install mlxtend
import numpy as np  

# 载入数据集
iris = datasets.load_iris()  
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target  

# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)  
clf2 = DecisionTreeClassifier() 
clf3 = LogisticRegression()  
 
# 定义一个次级分类器
lr = LogisticRegression()  
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],   
                          meta_classifier=lr)
  
for clf,label in zip([clf1, clf2, clf3, sclf],
                      ['KNN','Decision Tree','LogisticRegression','StackingClassifier']):  
    scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')  
    print("Accuracy: %0.2f [%s]" % (scores.mean(), label)) 

Accuracy: 0.91 [KNN]
Accuracy: 0.90 [Decision Tree]
Accuracy: 0.91 [LogisticRegression]
Accuracy: 0.94 [StackingClassifier]

Voting

原理

投票分类器
即使每个分类器都是弱学习者(意味着它只比随机猜测稍微好一些),整体仍然可以成为一个强大的学习者(达到高准确度),只要有足够数量的弱学习者并且他们足够多样化。

算法实现

from sklearn import datasets  
from sklearn import model_selection  
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier
import numpy as np

# 载入数据集
iris = datasets.load_iris()  
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target  

# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)  
clf2 = DecisionTreeClassifier() 
clf3 = LogisticRegression()  

sclf = VotingClassifier([('knn',clf1),('dtree',clf2), ('lr',clf3)])   
  
for clf, label in zip([clf1, clf2, clf3, sclf],
                      ['KNN','Decision Tree','LogisticRegression','VotingClassifier']):  
  
    scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')  
    print("Accuracy: %0.2f [%s]" % (scores.mean(), label)) 


Accuracy: 0.91 [KNN]
Accuracy: 0.93 [Decision Tree]
Accuracy: 0.91 [LogisticRegression]
Accuracy: 0.93 [VotingClassifier]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值