平方数的和差的最小值

该问题探讨了如何在1^2到N^2的平方数前加正负号,使得求和的绝对值最小。当N>=6时,对于4k, 4k+3的情况结果为0,4k+1, 4k+2的结果为1。通过数学归纳法证明了对于4k+2的情形,代数和绝对值最小值为1。对于三次方的情况,发现S(n+16)<=S(n),找到连续16个结果为0或1即可。DP方法在时间和空间上不适用,而结合数学分析问题变得简单。" 4378705,597645,Windows内核深入解析:CTL_CODE宏详解,"['windows', 'microsoft', 'kernel', 'device control']
摘要由CSDN通过智能技术生成

mathe ()     2002-05-11 08:17:04 在 专题开发/技术/项目 / 数据结构与算法 提问
输入正整数N,  
  要求输出  
  在1^2   ,   2^2,   3^3,...,N^2每个数前加上正负号后求和的绝对值的即小值。  
  N<=1000000.   :)  
   
  如果改成  

1^3,2^3,3^3,...,N^3结论又如何? 


20楼  liem   (阿明) 
情况已经清楚了  
  当n>=6时有:n=4k,4k+3结果为0,n=4k+1,4k+2结果为1。  
   
  根据上面的讨论,只要对n=4k+2进行证明就可以了。  
  记:S(m,n)(m<n)为m^2,(m+1)^2,...,n^2的代数和绝对值的最小值,s(n)=S(1,n)。则S(n,n+7)=0。  
  用归纳法证明s(4k+2)=1.已知k=1,k=2时有s(4k+2)=1(具体计算得出,见上面讨论),由于4k+2个数字中有2k+1个奇数,因此结果不能为零。设对k=1,2,...k0我们都有s(4*k+2)=1,则对k+1(k>=2),我们有:  
  S(4(k-1)+3,4(k+1)+2)=0  
  从而有:s(4(k+1)+2)=s(4(k-1)+2)+S(4(k-1)+3,4(k+1)+2)=1+0=1。  


 mathe   ()   回复于 2002-05-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值