第二章 拉普拉斯变换

Laplace 变换

2.1 Laplace变换概念

2.1.1 Laplace变换引入

F o u r i e r Fourier Fourier变换有非常广泛的应用,也有明显的缺点,即对函数 f ( x ) f(x) f(x)的要求太苛刻,这表现在两个方面:

  1. 当函数在区间 ( − ∞ , ∞ ) (-∞,\infty) (,)绝对可积,即满足 ∫ − ∞ ∞ ∣ f ( x ) ∣   d x < ∞ \int_{-\infty}^{\infty}|f(x)|\,{\rm d}x<∞ f(x)dx<时,傅里叶变换存在。这个条件要求当 ∣ x ∣ → ∞ |x|→∞ x时, f ( x ) → 0 f(x)→0 f(x)0。事实上,许多函数都不满足这个条件,如 f ( x ) = a ( 常 数 ) f(x)=a(常数) f(x)=a()、正弦和余弦函数、线性函数、单位阶跃函数等。
  2. 要求函数 f ( x ) f(x) f(x)必须在整个区间 f ( x ) f(x) f(x)有定义,对于定义在区间 0 ≤ x < ∞ 0≤x<\infty 0x<的函数,如以时间 t t t为变量的函数 f ( t ) f(t) f(t),则无法进行 F o u r i e r Fourier Fourier变换。
    解决这些问题的办法是引入 L a p l a c e Laplace Laplace变换。

2.1.2 Laplace变换的定义

L a p l a c e Laplace Laplace变换是在 F o u r i e r Fourier Fourier变换的基础上引入的。现在考虑对一个任意函数 g ( t ) ( t ≥ 0 ) g(t)(t≥0) g(t)(t0)进行 F o u r i e r Fourier Fourier变换,为了使之在 ( − ∞ , ∞ ) (-\infty,\infty) (,)区间有定义,给它乘以单位阶跃函数 u ( t ) u(t) u(t);为了容易满足绝对可积条件,再乘以衰减因子 e x p ( − β t ) ( β > 0 ) exp(-\beta t)(\beta>0) exp(βt)(β>0),然后对函数 g ( t ) u ( t ) e x p ( − β t ) g(t)u(t)exp(-\beta t) g(t)u(t)exp(βt)进行 F o u r i e r Fourier Fourier变换

G β ( ω ) = ∫ − ∞ + ∞ φ ( t ) u ( t ) e − β t e − i ω t   d t = ∫ 0 + ∞ f ( t ) e − ( β + i ω ) t   d t = ∫ 0 + ∞ f ( t ) e − s t   d t \begin{aligned}G_{\beta}(\omega)&=\int_{-\infty}^{+\infty}{\varphi(t)u(t)e^{-\beta t}e^{-i\omega t}}\,{\rm d}t\\&=\int_{0}^{+\infty}{f(t)e^{-(\beta+i\omega)t}}\,{\rm d}t=\int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t\end{aligned} Gβ(ω)=+φ(t)u(t)eβteiωtdt=0+f(t)e(β+iω)tdt=0+f(t)estdt
其中
s = β + i ω , f ( t ) = φ ( t ) u ( t ) s=\beta+i\omega,f(t)=\varphi(t)u(t) s=β+iω,f(t)=φ(t)u(t)
若再设
F ( s ) = G β ( s − β i ) F(s)=G_{\beta}\left(\frac{s-\beta}{i}\right) F(s)=Gβ(isβ)
则得
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t F(s)=\int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t F(s)=0+f(t)estdt

定义
设函数 f ( t ) f(t) f(t) t ≥ 0 t\ge0 t0有定义,而且积分
∫ 0 + ∞ f ( t ) e − s t   d t \int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t 0+f(t)estdt
s s s的某一域内收敛,则由此积分所确定的函数可写为
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t (2.1) F(s)=\int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t\tag{2.1} F(s)=0+f(t)estdt(2.1)
我们称 ( 2.1 ) (2.1) (2.1)式为函数 f ( t ) f(t) f(t) L a p l a c e Laplace Laplace变换式,记为
F ( s ) = L [ f ( t ) ] F(s)=\mathscr{L}\left[f(t)\right] F(s)=L[f(t)]
F ( s ) F(s) F(s)称为 f ( t ) f(t) f(t) L a p l a c e Laplace Laplace变换 ( 或 称 为 象 函 数 ) (或称为象函数) ()
F ( s ) F(s) F(s) f ( t ) f(t) f(t) L a p l a c e Laplace Laplace变换,则称 f ( t ) f(t) f(t) F ( s ) F(s) F(s) L a p l a c e Laplace Laplace逆变换 ( 或 称 为 象 原 函 数 ) (或称为象原函数) (),记为
f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathscr{L}^{-1}\left[F(s)\right] f(t)=L1[F(s)]
实际上, f ( t ) ( t ≥ 0 ) f(t)(t\ge0) f(t)(t0) L a p l a c e Laplace Laplace变换,实际上就是 f ( t ) u ( t ) e − β t f(t)u(t)e^{-\beta t} f(t)u(t)eβt F o u r i e r Fourier Fourier变换

2.1.3 Laplace变换的存在性定理

若函数 f ( t ) f(t) f(t)满足下列条件:

  1. t ≥ 0 t\ge0 t0的任一有限区间上分段连续;
  2. t → + ∞ t \to +\infty t+时, f ( t ) f(t) f(t)的增长速度不超过某一指数函数,亦即存在常数 M > 0 M>0 M>0 c ≥ 0 c\ge0 c0,使得
    ∣ f ( t ) ∣ ≤ M e c t , 0 ≤ t < + ∞ |f(t)|\le Me^{ct},0\le t<+\infty f(t)Mect,0t<+

成立
f ( t ) f(t) f(t) L a p l a c e Laplace Laplace变换
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t (2.1) F(s)=\int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t \tag{2.1} F(s)=0+f(t)estdt(2.1)
在半平面 R e ( s ) > c Re(s)>c Re(s)>c上一定存在,右端的积分在 R e ( s ) ≥ c 1 > c Re(s)\ge c_1>c Re(s)c1>c上绝对收敛而且一致收敛。

证明
由条件 2 2 2可知, ∀   t ∈ [ 0 , + ∞ ) \forall \,t\in[0,+\infty) t[0,+),有
∣ f ( t ) e − s t ∣ = ∣ f ( t ) ∣ e − β t ≤ M e − ( β − c ) t , R e ( s ) = β \left|f(t)e^{-st}\right|=|f(t)|e^{-\beta t}\le Me^{-(\beta -c)t},Re(s)=\beta f(t)est=f(t)eβtMe(βc)t,Re(s)=β
若令 β − c ≥ ε > 0 ( 即 β ≥ c + ε = c 1 ≥ c ) \beta-c\ge\varepsilon>0(即\beta \ge c+\varepsilon=c_1\ge c) βcε>0(βc+ε=c1c),则
∫ 0 + ∞ ∣ f ( t ) e − s t ∣   d t ≤ ∫ 0 + ∞ M e − ε t   d t = M ε < + ∞ \int_{0}^{+\infty}\left|{f(t)e^{-st}}\right|\,{\rm d}t \le\int_{0}^{+\infty}{Me^{-\varepsilon t}}\,{\rm d}t=\frac{M}{\varepsilon}<+\infty 0+f(t)estdt0+Meεtdt=εM<+

2.1.4 常见函数的Laplace变换

L [ 1 ] = 1 s \mathscr{L}[1]=\frac{1}{s} L[1]=s1

L [ t n ] = n ! s n + 1 ( n = 1 , 2 , 3 , ⋯   ) \mathscr{L}[t^n]=\frac{n!}{s^{n+1}}(n=1,2,3,\cdots) L[tn]=sn+1n!(n=1,2,3,)

L [ e a t ] = 1 s − a \mathscr{L}\left[e^{at}\right]=\frac{1}{s-a} L[eat]=sa1

L [ sin ⁡ k t ] = k s 2 + k 2 \mathscr{L}\left[\sin kt\right]=\frac{k}{s^2+k^2} L[sinkt]=s2+k2k

L [ cos ⁡ k t ] = s s 2 + k 2 \mathscr{L}\left[\cos kt\right]=\frac{s}{s^2+k^2} L[coskt]=s2+k2s

L [ sinh ⁡ k t ] = k s 2 − k 2 \mathscr{L}\left[\sinh kt\right]=\frac{k}{s^2-k^2} L[sinhkt]=s2k2k

L [ cosh ⁡ k t ] = s s 2 − k 2 \mathscr{L}\left[\cosh kt\right]=\frac{s}{s^2-k^2} L[coshkt]=s2k2s
具体可查一些教科书的 L a p l a c e Laplace Laplace变换表

2.2 Laplace变换的性质

2.2.1线性性质

α , β \alpha,\beta α,β是常数
L [ f 1 ( t ) ] = F 1 ( s ) , L [ f 2 ( t ) ] = F 2 ( s ) \mathscr{L}\left[f_1(t)\right]=F_1(s),\mathscr{L}\left[f_2(t)\right]=F_2(s) L[f1(t)]=F1(s),L[f2(t)]=F2(s)
则有

L [ α f 1 ( t ) + β f 2 ( t ) ] = α L [ f 1 ( t ) ] + β L [ f 2 ( t ) ] L − 1 [ α F 1 ( s ) + β F 2 ( s ) ] = α L − 1 [ F 1 ( s ) ] + β L − 1 [ F 2 ( s ) ] } (2.2) \left.\begin{array}{l}\mathscr{L}\left[\alpha f_{1}(t)+\beta f_{2}(t)\right]&=\alpha \mathscr{L}\left[f_{1}(t)\right]+\beta \mathscr{L}\left[f_2(t)\right] \\ \mathscr{L}^{-1}\left[\alpha F_{1}(s)+\beta F_{2}(s)\right] &=\alpha \mathscr{L}^{-1}\left[F_{1}(s)\right]+\beta \mathscr{L}^{-1}\left[F_{2}(s)\right]\end{array}\right\}\tag{2.2} L[αf1(t)+βf2(t)]L1[αF1(s)+βF2(s)]=αL[f1(t)]+βL[f2(t)]=αL1[F1(s)]+βL1[F2(s)]}(2.2)

2.2.2 微分性质


L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s)
则有
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) (2.3) \mathscr{L}\left[f^{\prime}(t)\right]=sF(s)-f(0) \tag{2.3} L[f(t)]=sF(s)f(0)(2.3)
证明
根据 L a p l a c e Laplace Laplace变换的定义,有
L [ f ′ ( t ) ] = ∫ 0 + ∞ f ′ ( t ) e − s t   d t = f ( t ) e − s t ∣ 0 + ∞ + s ∫ 0 + ∞ f ( t ) e − s t   d t = s F ( s ) − f ( 0 ) \begin{aligned}\mathscr{L}\left[f^{\prime}(t)\right]&=\int_{0}^{+\infty}{f^{\prime}(t)e^{-st}}\,{\rm d}t\\&=\left.f(t)e^{-st}\right|_{0}^{+\infty}+s\int_{0}^{+\infty}{f(t)e^{-st}}\,{\rm d}t \\&=sF(s)-f(0) \end{aligned} L[f(t)]=0+f(t)estdt=f(t)est0++s0+f(t)estdt=sF(s)f(0)
推论
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
L [ f ′ ′ ( t ) ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) \mathscr{L}\left[f^{\prime \prime}(t)\right]=s^2F(s)-sf(0)-f^{\prime}(0) L[f(t)]=s2F(s)sf(0)f(0)
一般地

L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) = s n F ( s ) − ∑ i = 0 n − 1 s n − 1 − i f ( i ) ( 0 ) (2.4) \begin{aligned}\mathscr{L}\left[f^{(n)}(t)\right]&=s^nF(s)-s^{n-1}f(0)-s^{n-2}f^{\prime}(0)-\cdots-f^{(n-1)}(0)\\&=s^nF(s)-\sum_{i=0}^{n-1}{s^{n-1-i}f^{(i)}(0)}\end{aligned}\tag{2.4} L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)=snF(s)i=0n1sn1if(i)(0)(2.4)

f ( 0 ) = f ′ ( 0 ) = ⋯ = f ( n − 1 ) ( 0 ) = 0 f(0)=f^{\prime}(0)=\cdots=f^{(n-1)}(0)=0 f(0)=f(0)==f(n1)(0)=0时,有
L [ f ′ ( t ) ] = s F ( s ) , L [ f ′ ′ ( t ) ] = s 2 F ( s ) , ⋯   , L [ f ( n ) ( t ) ] = s ( n ) F ( s ) (2.5) \mathscr{L}\left[f^{\prime}(t)\right]=sF(s), \mathscr{L}\left[f^{\prime\prime}(t)\right]=s^2F(s),\cdots, \mathscr{L}\left[f^{(n)}(t)\right]=s^{(n)}F(s)\tag{2.5} L[f(t)]=sF(s),L[f(t)]=s2F(s),,L[f(n)(t)]=s(n)F(s)(2.5)
对于象函数
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则
F ′ ( s ) = − L [ t f ( t ) ] , R e ( s ) > c (2.6) F^{\prime}(s)=-\mathscr{L}\left[tf(t)\right],Re(s)>c\tag{2.6} F(s)=L[tf(t)],Re(s)>c(2.6)
一般地,有
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] , R e ( s ) > c (2.7) F^{(n)}(s)=(-1)^n\mathscr{L}\left[t^nf(t)\right],Re(s)>c\tag{2.7} F(n)(s)=(1)nL[tnf(t)],Re(s)>c(2.7)

2.2.3 积分性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则
L [ ∫ 0 t f ( t )   d t ] = 1 s F ( s ) (2.8) \mathscr{L}\left[\int_{0}^{t} {f(t)}\,{\rm d}t\right]=\frac{1}{s}F(s)\tag{2.8} L[0tf(t)dt]=s1F(s)(2.8)
证明
h ( t ) = ∫ 0 t f ( t )   d t h(t)=\int_{0}^{t}f(t)\,{\rm d}t h(t)=0tf(t)dt,则有
h ′ ( t ) = f ( t ) , 且 h ( 0 ) = 0 h^{\prime}(t)=f(t),且 h(0)=0 h(t)=f(t),h(0)=0
由微分性质,有
L [ h ′ ( t ) ] = s L [ h ( t ) ] − h ( 0 ) = s L [ h ( t ) ] \mathscr{L}\left[h^{\prime}(t)\right]=s\mathscr{L}\left[h(t)\right]-h(0)= s\mathscr{L}\left[h(t)\right] L[h(t)]=sL[h(t)]h(0)=sL[h(t)]

L [ ∫ 0 t f ( t )   d t ] = 1 s L [ f ( t ) ] = 1 s F ( s ) \mathscr{L}\left[\int_{0}^{t} {f(t)}\,{\rm d}t\right] =\frac{1}{s}\mathscr{L}\left[f(t)\right]= \frac{1}{s}F(s) L[0tf(t)dt]=s1L[f(t)]=s1F(s)
推广
L { ∫ 0 t   d t ∫ 0 t   d t ⋯ ∫ 0 t f ( t )   d t } = 1 s n F ( s ) (2.9) \mathscr{L} \left\{ \int_{0}^{t}\,{\rm d}t \int_{0}^{t}\,{\rm d}t\cdots \int_{0}^{t}f(t)\,{\rm d}t\right\}=\frac{1}{s^n}F(s)\tag{2.9} L{0tdt0tdt0tf(t)dt}=sn1F(s)(2.9)
象函数积分性质
L [ f ( t ) t ] = ∫ t ∞ F ( s )   d s (2.10) \mathscr{L}\left[\frac{f(t)}{t}\right]=\int_{t}^{\infty}F(s)\,{\rm d}s\tag{2.10} L[tf(t)]=tF(s)ds(2.10)

f ( t ) = t L − 1 [ ∫ t ∞ F ( s )   d s ] f(t)=t\mathscr{L}^{-1}\left[\int_{t}^{\infty}F(s)\,{\rm d}s\right] f(t)=tL1[tF(s)ds]
一般地,有
L [ f ( t ) t n ] = ∫ t ∞   d s ∫ t ∞   d s ⋯ ∫ t ∞ F ( s )   d s (2.11) \mathscr{L}\left[\frac{f(t)}{t^n}\right]= \int_{t}^{\infty}\,{\rm d}s \int_{t}^{\infty}\,{\rm d}s\cdots \int_{t}^{\infty}F(s)\,{\rm d}s\tag{2.11} L[tnf(t)]=tdstdstF(s)ds(2.11)

2.2.4 位移性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
L [ e a t f ( t ) ] = F ( s − a ) ( R e ( s − a ) > c ) (2.12) \mathscr{L}\left[e^{at}f(t)\right]=F(s-a)(Re(s-a)>c)\tag{2.12} L[eatf(t)]=F(sa)(Re(sa)>c)(2.12)
证明
根据 ( 2.1 ) (2.1) (2.1)式,有
L [ e a t f ( t ) ] = ∫ 0 + ∞ e a t f ( t ) e − s t   d t = ∫ 0 + ∞ f ( t ) e − ( s − a ) t   d t = F ( s − a ) ( R e ( s − a ) > c ) \mathscr{L}\left[e^{at}f(t)\right]=\int_{0}^{+\infty}e^{at}f(t)e^{-st}\,{\rm d}t=\int_{0}^{+\infty}{f(t)e^{-(s-a)t}}\,{\rm d}t=F(s-a)(Re(s-a)>c) L[eatf(t)]=0+eatf(t)estdt=0+f(t)e(sa)tdt=F(sa)(Re(sa)>c)

2.2.5 延迟性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s)。又 t < 0 t<0 t<0 f ( t ) = 0 f(t)=0 f(t)=0,对于任一非负实数 τ \tau τ,有

L [ f ( t − τ ) ] = e − s τ F ( s ) L − 1 [ e − s τ F ( s ) ] = f ( t − τ ) } (2.13) \left.\begin{array}{l}\mathscr{L}&\left[f(t-\tau)\right]&=e^{-s\tau}F(s) \\ \mathscr{L}^{-1}&\left[e^{-s\tau}F(s)\right]&=f(t-\tau)\end{array}\right\}\tag{2.13} LL1[f(tτ)][esτF(s)]=esτF(s)=f(tτ)}(2.13)

证明
根据 ( 2.1 ) (2.1) (2.1)式有
L [ f ( t − τ ) ] = ∫ 0 + ∞ f ( t − τ ) e − s t   d t = ∫ 0 t f ( t − τ ) e − s t   d t + ∫ t + ∞ f ( t − τ ) e − s t   d t \mathscr{L}\left[f(t-\tau)\right]=\int_{0}^{+\infty}{f(t-\tau)e^{-st}}\,{\rm d}t=\int_{0}^{t}{f(t-\tau)e^{-st}}\,{\rm d}t+ \int_{t}^{+\infty}{f(t-\tau)e^{-st}}\,{\rm d}t L[f(tτ)]=0+f(tτ)estdt=0tf(tτ)estdt+t+f(tτ)estdt
t − τ = u t-\tau=u tτ=u,则
L [ f ( t − τ ) ] = ∫ 0 + ∞ f ( u ) e − s ( u + τ )   d u = e − s τ ∫ 0 + ∞ f ( u ) e − s u   d u = e − s τ F ( s ) ( R e ( s ) > c ) \begin{aligned} \mathscr{L}\left[f(t-\tau)\right]&=\int_{0}^{+\infty}{f(u)e^{-s(u+\tau)}}\,{\rm d}u\\&=e^{-s\tau}\int_{0}^{+\infty}{f(u)e^{-su}}\,{\rm d}u\\&=e^{-s\tau}F(s) (Re(s)>c) \end{aligned} L[f(tτ)]=0+f(u)es(u+τ)du=esτ0+f(u)esudu=esτF(s)(Re(s)>c)

2.2.6 初值定理与终值定理

初值定理
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),且 lim ⁡ s → ∞ s F ( s ) \lim\limits_{s \to \infty}{sF(s)} slimsF(s)存在,则
lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s F ( s ) o r f ( 0 ) = lim ⁡ s → ∞ s F ( s ) } (2.14) \left.\begin{array}{l}\lim\limits_{t \to 0}&f(t)&=\lim\limits_{s \to \infty}sF(s) \\or\\&f(0)&=\lim\limits_{s\to \infty}sF(s)\end{array}\right\}\tag{2.14} t0limorf(t)f(0)=slimsF(s)=slimsF(s)(2.14)
证明
根据 L a p l a c e Laplace Laplace变换的微分性质
L [ f ′ ( t ) ] = s L [ f ( t ) ] − f ( 0 ) = s F ( s ) − f ( 0 ) \begin{aligned} \mathscr{L}\left[f^{\prime}(t)\right]&=s\mathscr{L}\left[f(t)\right]-f(0)\\&=sF(s)-f(0) \end{aligned} L[f(t)]=sL[f(t)]f(0)=sF(s)f(0)
lim ⁡ s → ∞ s F ( s ) \lim\limits_{s \to \infty}{sF(s)} slimsF(s)存在,则 lim ⁡ R e ( s ) → + ∞ s F ( s ) \lim\limits_{Re(s) \to +\infty}{sF(s)} Re(s)+limsF(s)必存在,且两者相等。
lim ⁡ s → ∞ s F ( s ) = lim ⁡ R e ( s ) → + ∞ s F ( s ) \lim\limits_{s \to \infty}{sF(s)}= \lim\limits_{Re(s) \to +\infty}{sF(s)} slimsF(s)=Re(s)+limsF(s)
两边取 R e ( s ) → + ∞ Re(s)\to +\infty Re(s)+时的极限
lim ⁡ R e ( s ) → + ∞ L [ f ′ ( t ) ] = lim ⁡ R e ( s ) → + ∞ [ s L [ f ( t ) ] − f ( 0 ) ] = lim ⁡ s → ∞ s F ( s ) − f ( 0 ) \begin{aligned} \lim\limits_{Re(s)\to+\infty}\mathscr{L}\left[f^{\prime}(t)\right]&= \lim\limits_{Re(s)\to+\infty} \left[s\mathscr{L}\left[f(t)\right]-f(0)\right]\\&= \lim\limits_{s\to\infty} sF(s)-f(0) \end{aligned} Re(s)+limL[f(t)]=Re(s)+lim[sL[f(t)]f(0)]=slimsF(s)f(0)
另一方面
lim ⁡ R e ( s ) → + ∞ L [ f ′ ( t ) ] = lim ⁡ R e ( s ) → + ∞ ∫ 0 + ∞ f ′ ( t ) e − s t   d t = ∫ 0 + ∞ lim ⁡ R e ( s ) → + ∞ f ′ ( t ) e − s t   d t = 0 \begin{aligned} \lim\limits_{Re(s)\to+\infty}\mathscr{L}\left[f^{\prime}(t)\right]&= \lim\limits_{Re(s)\to+\infty} \int_{0}^{+\infty}{f^{\prime}(t)e^{-st}}\,{\rm d}t\\&=\int_{0}^{+\infty} \lim\limits_{Re(s)\to+\infty} f^{\prime}(t)e^{-st}\,{\rm d}t\\&=0 \end{aligned} Re(s)+limL[f(t)]=Re(s)+lim0+f(t)estdt=0+Re(s)+limf(t)estdt=0
所以
lim ⁡ s → ∞ s F ( s ) − f ( 0 ) = 0 \lim\limits_{s\to\infty} sF(s)-f(0)=0 slimsF(s)f(0)=0

lim ⁡ s → ∞ s F ( s ) = f ( 0 ) = lim ⁡ t → 0 f ( t ) \lim\limits_{s\to\infty} sF(s)=f(0)=\lim\limits_{t\to 0}f(t) slimsF(s)=f(0)=t0limf(t)
终值定理

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),且 s F ( s ) sF(s) sF(s)的所有奇点全在 s s s平面的左半部,则
lim ⁡ t → + ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) o r f ( + ∞ ) = lim ⁡ s → 0 s F ( s ) } (2.15) \left.\begin{array}{l}&\lim\limits_{t\to+\infty}f(t)&=\lim\limits_{s\to0}sF(s) \\or\\&f(+\infty)&= \lim\limits_{s\to0}sF(s)\end{array}\right\}\tag{2.15} ort+limf(t)f(+)=s0limsF(s)=s0limsF(s)(2.15)
证明
根据定理给出条件与微分性质
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) \mathscr{L}\left[f^{\prime}(t)\right]=sF(s)-f(0) L[f(t)]=sF(s)f(0)
两边取 s → 0 s\to 0 s0的极限,得
lim ⁡ s → 0 L [ f ′ ( t ) ] = lim ⁡ s → 0 [ s F ( s ) − f ( 0 ) ] = lim ⁡ s → 0 s F ( s ) − f ( 0 ) \lim\limits_{s\to 0}\mathscr{L} \left[f^{\prime}(t)\right]=\lim\limits_{s\to 0}\left[sF(s)-f(0)\right]= \lim\limits_{s\to 0} sF(s)-f(0) s0limL[f(t)]=s0lim[sF(s)f(0)]=s0limsF(s)f(0)

lim ⁡ s → 0 L [ f ′ ( t ) ] = lim ⁡ s → 0 ∫ 0 + ∞ f ′ ( t ) e − s t   d s = ∫ 0 + ∞ lim ⁡ s → 0 e − s t f ′ ( t )   d t = ∫ 0 + ∞ f ′ ( t )   d t = lim ⁡ t → + ∞ f ( t ) − f ( 0 ) \begin{aligned} \lim\limits_{s\to 0}\mathscr{L}\left[f^{\prime}(t)\right]&=\lim\limits_{s \to 0}\int_{0}^{+\infty}{f^{\prime}(t)e^{-st}}\,{\rm d}s\\&=\int_{0}^{+\infty}{\lim\limits_{s\to 0}e^{-st}f^{\prime}(t)}\,{\rm d}t\\&=\int_{0}^{+\infty}{f^{\prime}(t)}\,{\rm d}t\\&= \lim\limits_{t\to +\infty} f(t)-f(0) \end{aligned} s0limL[f(t)]=s0lim0+f(t)estds=0+s0limestf(t)dt=0+f(t)dt=t+limf(t)f(0)
所以
lim ⁡ t → + ∞ f ( t ) − f ( 0 ) = lim ⁡ s → 0 s F ( s ) − f ( 0 ) \lim\limits_{t\to +\infty} f(t)-f(0) =\lim\limits_{s\to 0} sF(s)-f(0) t+limf(t)f(0)=s0limsF(s)f(0)

lim ⁡ t → + ∞ f ( t ) = f ( + ∞ ) = lim ⁡ s → 0 s F ( s ) \lim\limits_{t\to +\infty} f(t)=f(+\infty)= \lim\limits_{s\to 0} sF(s) t+limf(t)=f(+)=s0limsF(s)

2.3 Laplace逆变换

函数 f ( t ) f(t) f(t) L a p l a c e Laplace Laplace变换,实际上是 f ( t ) u ( t ) e − β t f(t)u(t)e^{-\beta t} f(t)u(t)eβt F o u r i e r Fourier Fourier变换。于是,当 f ( t ) u ( t ) e − β t f(t)u(t)e^{-\beta t} f(t)u(t)eβt满足 F o u r i e r Fourier Fourier积分定理的条件时,按 F o u r i e r Fourier Fourier积分公式,在 f ( t ) f(t) f(t)连续点处有
f ( t ) u ( t ) e − β t = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) u ( τ ) e − β τ e − i ω t   d τ ] e i ω t   d ω = 1 2 π ∫ − ∞ + ∞ e i ω t   d ω [ ∫ 0 + ∞ f ( τ ) e − ( β + i ω ) τ   d t ] = 1 2 π ∫ − ∞ + ∞ F ( β + i ω ) e i ω t   d ω , t > 0 \begin{aligned} f(t)u(t)e^{-\beta t}&=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{\left[\int_{-\infty}^{+\infty} f(\tau)u(\tau)e^{-\beta \tau}e^{- i\omega t}\,{\rm d}\tau\right]e^{i\omega t}}\,{\rm d}\omega\\&=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{e^{i\omega t}}\,{\rm d}\omega\left[\int_{0}^{+\infty}{f(\tau)e^{-(\beta+i\omega)\tau}}\,{\rm d}t\right]\\&=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{F(\beta+i\omega)e^{i\omega t}}\,{\rm d}\omega,t>0 \end{aligned} f(t)u(t)eβt=2π1+[+f(τ)u(τ)eβτeiωtdτ]eiωtdω=2π1+eiωtdω[0+f(τ)e(β+iω)τdt]=2π1+F(β+iω)eiωtdω,t>0
等式两边乘以 e β t e^{\beta t} eβt,令 β + i ω = s \beta+i\omega=s β+iω=s,有
f ( t ) = 1 2 π i ∫ β − i ∞ β + i ∞ F ( s ) e s t   d s ( t > 0 ) (2.16) f(t)=\frac{1}{2\pi i}\int_{\beta-i\infty}^{\beta+i\infty}{F(s)e^{st}}\,{\rm d}s(t>0)\tag{2.16} f(t)=2πi1βiβ+iF(s)estds(t>0)(2.16)
此为象函数 F ( s ) F(s) F(s)求它的象原函数 f ( t ) f(t) f(t)的一般公式,右端积分称为 L a p l a c e Laplace Laplace反演积分。

借助留数定理计算
s 1 , s 2 , ⋯   , s n s_1,s_2,\cdots,s_n s1,s2,,sn是函数 F ( s ) F(s) F(s)的所有奇点(适当选取 β \beta β使这些奇点全在 R e ( s ) < β Re(s)<\beta Re(s)<β的范围内),且当 s → ∞ s \to \infty s时, F ( s ) → 0 F(s)\to0 F(s)0,则有
f ( t ) = 1 2 π i ∫ β − i ∞ β + i ∞ F ( s ) e s t   d s = ∑ k = 1 n Res s = s k [ F ( s ) e s t ] , ( t > 0 ) (2.17) f(t)= \frac{1}{2\pi i}\int_{\beta-i\infty}^{\beta+i\infty}{F(s)e^{st}}\,{\rm d}s=\sum_{k=1}^{n}{\underset{s=s_{k}}{\text{Res}}\left[F(s)e^{st}\right]},(t>0)\tag{2.17} f(t)=2πi1βiβ+iF(s)estds=k=1ns=skRes[F(s)est],(t>0)(2.17)
证明用到了 J o r d a n Jordan Jordan定理,可查阅复变函数论
除了上述方法,还可以用部分分式和查表方法解决。

2.4 卷积

假定 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)满足 L a p l a c e Laplace Laplace变换存在定理中的条件,且 L [ f 1 ( t ) ] = F 1 ( s ) , L [ f 2 ( t ) ] = F 2 ( s ) \mathscr{L}\left[f_1(t)\right]=F_1(s), \mathscr{L}\left[f_2(t)\right]=F_2(s) L[f1(t)]=F1(s),L[f2(t)]=F2(s),则 f 1 ( t ) ∗ f 2 ( t ) f_1(t)\ast f_2(t) f1(t)f2(t) L a p l a c e Laplace Laplace变换一定存在,且
L [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( s ) ⋅ F 2 ( s ) o r L − 1 [ F 1 ( s ) ⋅ F 2 ( s ) ] = f 1 ( t ) ∗ f 2 ( t ) } (2.18) \left.\begin{array}{l}\mathscr{L}\left[f_1(t)\ast f_2(t)\right]&=F_1(s)\cdot F_2(s)\\or \\\mathscr{L}^{-1}\left[F_1(s)\cdot F_2(s)\right]&=f_1(t)\ast f_2(t)\end{array}\right\}\tag{2.18} L[f1(t)f2(t)]orL1[F1(s)F2(s)]=F1(s)F2(s)=f1(t)f2(t)(2.18)
推广
f k ( t ) ( k = 1 , 2 , ⋯   , n ) f_k(t)(k=1,2,\cdots,n) fk(t)(k=1,2,,n)满足 L a p l a c e Laplace Laplace变换存在条件,且 L [ f k ( t ) ] = F k ( s ) ( k = 1 , 2 , ⋯   , n ) \mathscr{L}\left[f_k(t)\right]=F_k(s)(k=1,2,\cdots,n) L[fk(t)]=Fk(s)(k=1,2,,n),则有
L [ f 1 ( t ) ∗ f 2 ( t ) ∗ ⋯ ∗ f n ( t ) ] = F 1 ( s ) ⋅ F 2 ( s ) ⋅ ⋯ ⋅ F n ( s ) (2.19) \mathscr{L}\left[f_1(t)\ast f_2(t)\ast \cdots\ast f_n(t)\right]=F_1(s)\cdot F_2(s)\cdot \cdots \cdot F_n(s)\tag{2.19} L[f1(t)f2(t)fn(t)]=F1(s)F2(s)Fn(s)(2.19)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值