微分中值定理,常数K值法

微分中值定理技巧,k值法

一个例子

f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]连续,在 ( a , b ) (a,b) (a,b)内可导,证明:在 ( a , b ) (a,b) (a,b)内至少存在一个 ξ \xi ξ,使
b f ( b ) − a f ( a ) = [ f ( ξ ) + ξ f ′ ( ξ ) ] ( b − a ) (1) bf(b)-af(a)=\left[f(\xi)+\xi f^{\prime}(\xi)\right](b-a)\tag{1} bf(b)af(a)=[f(ξ)+ξf(ξ)](ba)(1)

证明
( 1 ) (1) (1)变形为
b f ( b ) − a f ( a ) b − a = f ( ξ ) + ξ f ′ ( ξ ) (2) \frac{bf(b)-af(a)}{b-a}=f(\xi)+\xi f^{\prime}(\xi)\tag{2} babf(b)af(a)=f(ξ)+ξf(ξ)(2)


K = b f ( b ) − a f ( a ) b − a (3) K= \frac{bf(b)-af(a)}{b-a}\tag{3} K=babf(b)af(a)(3)


F ( x ) = x f ( x ) − a f ( a ) − K ( x − a ) F(x)=xf(x)-af(a)-K(x-a) F(x)=xf(x)af(a)K(xa)

可知
F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b)
应用罗尔定理可知
∃   ξ ∈ ( a , b ) \exists\,\xi\in(a,b) ξ(a,b),使
f ( ξ ) + ξ f ′ ( ξ ) − K = 0 f(\xi)+\xi f^{\prime}(\xi)-K=0 f(ξ)+ξf(ξ)K=0
原式得证

常数k值法

讨论k值法的使用条件

(1)等式一端只是与区间端点 a , b a,b a,b及其函数值,导数值有关的常数,另一端是只含导函数和函数在区间内某点(中值点)的值,就称它是分离的。
(2)如果把式中 b b b换作 a a a时,原式呈 0 = 0 0=0 0=0形式,则称它是对称式。

k值法步骤

(1)把原式化成分离形式,令等式一端常数等于 K K K
(2)再把原式化成对称式,把含有中值的导数式换为 K K K,把 b b b换为 x x x,再将右端移至左端,把所得的式子记作 F ( x ) F(x) F(x),这就是作出的辅助函数。
(3)由 F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b),根据罗尔定理,得到 ∃   ξ ∈ ( a , b ) , F ′ ( ξ ) = 0 \exists\,\xi\in(a,b) ,F^{\prime}(\xi)=0 ξ(a,b),F(ξ)=0
(4)若原式中含有二阶导数,可由 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0解出 K K K后,再一次使用中值定理。

应用

1.证明:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内二次可微,则必存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − 2 f ( a + b 2 ) + f ( a ) = ( b − a ) 2 4 f ′ ′ ( ξ ) f(b)-2f\left(\frac{a+b}{2}\right)+f(a)=\frac{(b-a)^2}{4}f^{\prime\prime}(\xi) f(b)2f(2a+b)+f(a)=4(ba)2f(ξ)
证明

K = [ 4 ( a − b ) 2 ] [ f ( b ) − 2 f ( a + b 2 ) + f ( a ) ] K=\left[\frac{4}{(a-b)^2}\right]\left[f(b)-2f\left(\frac{a+b}{2}\right)+f(a)\right] K=[(ab)24][f(b)2f(2a+b)+f(a)]

F ( x ) = f ( x ) − 2 f ( a + x 2 ) + f ( a ) − ( x − a ) 2 4 K F(x)=f(x)-2f\left(\frac{a+x}{2}\right)+f(a)-\frac{(x-a)^2}{4}K F(x)=f(x)2f(2a+x)+f(a)4(xa)2K

可得
F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0
应用罗尔定理可知
∃   η ∈ ( a , b ) , F ′ ( η ) = 0 \exists\,\eta\in(a,b),F^{\prime}(\eta)=0 η(a,b),F(η)=0

f ′ ( η ) − f ′ ( a + η 2 ) − ( η − a ) 2 K = 0 f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)-\frac{(\eta-a)}{2}K=0 f(η)f(2a+η)2(ηa)K=0

从而

K = f ′ ( η ) − f ′ ( a + η 2 ) η − a 2 K=\frac{f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)}{\frac{\eta-a}{2}} K=2ηaf(η)f(2a+η)

应用拉格朗日定理得

f ′ ( η ) − f ′ ( a + η 2 ) η − a 2 = f ′ ′ ( ξ ) , ξ ∈ ( a + η 2 , η ) \frac{f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)}{\frac{\eta-a}{2}}=f^{\prime\prime}(\xi),\xi\in(\frac{a+\eta}{2},\eta) 2ηaf(η)f(2a+η)=f(ξ),ξ(2a+η,η)

原式得证

2.证明:
∀   c ∈ ( a , b ) , ∃   x 0 ∈ ( a , b ) , s . t . \forall\,c\in(a,b),\exists\,x_0\in(a,b),s.t. c(a,b),x0(a,b),s.t.
f ′ ′ ( x 0 ) 2 = f ( a ) ( a − b ) ( a − c ) + f ( b ) ( b − a ) ( b − c ) + f ( c ) ( c − a ) ( c − b ) \frac{f^{\prime\prime}(x_0)}{2}=\frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)} 2f(x0)=(ab)(ac)f(a)+(ba)(bc)f(b)+(ca)(cb)f(c)

g ( x ) = K 2 ( a − x ) ( x − c ) ( c − a ) + f ( a ) ( x − c ) + f ( x ) ( c − a ) + f ( c ) ( a − x ) g(x)=\frac{K}{2}(a-x)(x-c)(c-a)+f(a)(x-c)+f(x)(c-a)+f(c)(a-x) g(x)=2K(ax)(xc)(ca)+f(a)(xc)+f(x)(ca)+f(c)(ax)

那么
g ( a ) = g ( c ) = g ( b ) = 0 g(a)=g(c)=g(b)=0 g(a)=g(c)=g(b)=0

应用罗尔定理,有

∃   x 1 ∈ ( a , c ) , x 2 ∈ ( c , b ) , s . t . g ′ ( x 1 ) = g ′ ( x 2 ) = 0 \exists\,x_1\in(a,c),x_2\in(c,b),s.t. g^{\prime}(x_1)=g^{\prime}(x_2)=0 x1(a,c),x2(c,b),s.t.g(x1)=g(x2)=0

再次应用罗尔定理,得
∃   x 0 ∈ ( x 1 , x 2 ) ⊂ ( a , b ) , s . t . g ′ ′ ( x 0 ) = 0 \exists\,x_0\in(x_1,x_2)\subset(a,b),s.t. g^{\prime\prime}(x_0)=0 x0(x1,x2)(a,b),s.t.g(x0)=0


g ′ ′ ( x 0 ) = K 2 ⋅ 2 ( a − c ) + f ′ ′ ( x 0 ) ( c − a ) g^{\prime\prime}(x_0)=\frac{K}{2}\cdot 2(a-c)+f^{\prime\prime}(x_0)(c-a) g(x0)=2K2(ac)+f(x0)(ca)


K = f ′ ′ ( x 0 ) K=f^{\prime\prime}(x_0) K=f(x0)
原式得证

参考文献

[1]微分中值定理的常数k值法[J] 李淑花 中南林学院 理学院。
[2]微分中值定理的常数k值法,知乎博主:勥巭炛,专栏:数学拾遗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值