微分中值定理技巧,k值法
一个例子
设
f
(
x
)
f(x)
f(x)在区间
[
a
,
b
]
[a,b]
[a,b]连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,证明:在
(
a
,
b
)
(a,b)
(a,b)内至少存在一个
ξ
\xi
ξ,使
b
f
(
b
)
−
a
f
(
a
)
=
[
f
(
ξ
)
+
ξ
f
′
(
ξ
)
]
(
b
−
a
)
(1)
bf(b)-af(a)=\left[f(\xi)+\xi f^{\prime}(\xi)\right](b-a)\tag{1}
bf(b)−af(a)=[f(ξ)+ξf′(ξ)](b−a)(1)
证明
将
(
1
)
(1)
(1)变形为
b
f
(
b
)
−
a
f
(
a
)
b
−
a
=
f
(
ξ
)
+
ξ
f
′
(
ξ
)
(2)
\frac{bf(b)-af(a)}{b-a}=f(\xi)+\xi f^{\prime}(\xi)\tag{2}
b−abf(b)−af(a)=f(ξ)+ξf′(ξ)(2)
令
K
=
b
f
(
b
)
−
a
f
(
a
)
b
−
a
(3)
K= \frac{bf(b)-af(a)}{b-a}\tag{3}
K=b−abf(b)−af(a)(3)
作
F
(
x
)
=
x
f
(
x
)
−
a
f
(
a
)
−
K
(
x
−
a
)
F(x)=xf(x)-af(a)-K(x-a)
F(x)=xf(x)−af(a)−K(x−a)
可知
F
(
a
)
=
F
(
b
)
F(a)=F(b)
F(a)=F(b)
应用罗尔定理可知
∃
ξ
∈
(
a
,
b
)
\exists\,\xi\in(a,b)
∃ξ∈(a,b),使
f
(
ξ
)
+
ξ
f
′
(
ξ
)
−
K
=
0
f(\xi)+\xi f^{\prime}(\xi)-K=0
f(ξ)+ξf′(ξ)−K=0
原式得证
常数k值法
讨论k值法的使用条件
(1)等式一端只是与区间端点
a
,
b
a,b
a,b及其函数值,导数值有关的常数,另一端是只含导函数和函数在区间内某点(中值点)的值,就称它是分离的。
(2)如果把式中
b
b
b换作
a
a
a时,原式呈
0
=
0
0=0
0=0形式,则称它是对称式。
k值法步骤
(1)把原式化成分离形式,令等式一端常数等于
K
K
K
(2)再把原式化成对称式,把含有中值的导数式换为
K
K
K,把
b
b
b换为
x
x
x,再将右端移至左端,把所得的式子记作
F
(
x
)
F(x)
F(x),这就是作出的辅助函数。
(3)由
F
(
a
)
=
F
(
b
)
F(a)=F(b)
F(a)=F(b),根据罗尔定理,得到
∃
ξ
∈
(
a
,
b
)
,
F
′
(
ξ
)
=
0
\exists\,\xi\in(a,b) ,F^{\prime}(\xi)=0
∃ξ∈(a,b),F′(ξ)=0
(4)若原式中含有二阶导数,可由
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0解出
K
K
K后,再一次使用中值定理。
应用
1.证明:若
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内二次可微,则必存在
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使得
f
(
b
)
−
2
f
(
a
+
b
2
)
+
f
(
a
)
=
(
b
−
a
)
2
4
f
′
′
(
ξ
)
f(b)-2f\left(\frac{a+b}{2}\right)+f(a)=\frac{(b-a)^2}{4}f^{\prime\prime}(\xi)
f(b)−2f(2a+b)+f(a)=4(b−a)2f′′(ξ)。
证明
令
K = [ 4 ( a − b ) 2 ] [ f ( b ) − 2 f ( a + b 2 ) + f ( a ) ] K=\left[\frac{4}{(a-b)^2}\right]\left[f(b)-2f\left(\frac{a+b}{2}\right)+f(a)\right] K=[(a−b)24][f(b)−2f(2a+b)+f(a)]
作
F ( x ) = f ( x ) − 2 f ( a + x 2 ) + f ( a ) − ( x − a ) 2 4 K F(x)=f(x)-2f\left(\frac{a+x}{2}\right)+f(a)-\frac{(x-a)^2}{4}K F(x)=f(x)−2f(2a+x)+f(a)−4(x−a)2K
可得
F
(
a
)
=
F
(
b
)
=
0
F(a)=F(b)=0
F(a)=F(b)=0
应用罗尔定理可知
∃
η
∈
(
a
,
b
)
,
F
′
(
η
)
=
0
\exists\,\eta\in(a,b),F^{\prime}(\eta)=0
∃η∈(a,b),F′(η)=0
即
f
′
(
η
)
−
f
′
(
a
+
η
2
)
−
(
η
−
a
)
2
K
=
0
f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)-\frac{(\eta-a)}{2}K=0
f′(η)−f′(2a+η)−2(η−a)K=0
从而
K = f ′ ( η ) − f ′ ( a + η 2 ) η − a 2 K=\frac{f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)}{\frac{\eta-a}{2}} K=2η−af′(η)−f′(2a+η)
应用拉格朗日定理得
f ′ ( η ) − f ′ ( a + η 2 ) η − a 2 = f ′ ′ ( ξ ) , ξ ∈ ( a + η 2 , η ) \frac{f^{\prime}(\eta)-f^{\prime}\left(\frac{a+\eta}{2}\right)}{\frac{\eta-a}{2}}=f^{\prime\prime}(\xi),\xi\in(\frac{a+\eta}{2},\eta) 2η−af′(η)−f′(2a+η)=f′′(ξ),ξ∈(2a+η,η)
原式得证
2.证明:
∀
c
∈
(
a
,
b
)
,
∃
x
0
∈
(
a
,
b
)
,
s
.
t
.
\forall\,c\in(a,b),\exists\,x_0\in(a,b),s.t.
∀c∈(a,b),∃x0∈(a,b),s.t.
f
′
′
(
x
0
)
2
=
f
(
a
)
(
a
−
b
)
(
a
−
c
)
+
f
(
b
)
(
b
−
a
)
(
b
−
c
)
+
f
(
c
)
(
c
−
a
)
(
c
−
b
)
\frac{f^{\prime\prime}(x_0)}{2}=\frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}
2f′′(x0)=(a−b)(a−c)f(a)+(b−a)(b−c)f(b)+(c−a)(c−b)f(c)
设
g ( x ) = K 2 ( a − x ) ( x − c ) ( c − a ) + f ( a ) ( x − c ) + f ( x ) ( c − a ) + f ( c ) ( a − x ) g(x)=\frac{K}{2}(a-x)(x-c)(c-a)+f(a)(x-c)+f(x)(c-a)+f(c)(a-x) g(x)=2K(a−x)(x−c)(c−a)+f(a)(x−c)+f(x)(c−a)+f(c)(a−x)
那么
g
(
a
)
=
g
(
c
)
=
g
(
b
)
=
0
g(a)=g(c)=g(b)=0
g(a)=g(c)=g(b)=0
应用罗尔定理,有
∃ x 1 ∈ ( a , c ) , x 2 ∈ ( c , b ) , s . t . g ′ ( x 1 ) = g ′ ( x 2 ) = 0 \exists\,x_1\in(a,c),x_2\in(c,b),s.t. g^{\prime}(x_1)=g^{\prime}(x_2)=0 ∃x1∈(a,c),x2∈(c,b),s.t.g′(x1)=g′(x2)=0
再次应用罗尔定理,得
∃
x
0
∈
(
x
1
,
x
2
)
⊂
(
a
,
b
)
,
s
.
t
.
g
′
′
(
x
0
)
=
0
\exists\,x_0\in(x_1,x_2)\subset(a,b),s.t. g^{\prime\prime}(x_0)=0
∃x0∈(x1,x2)⊂(a,b),s.t.g′′(x0)=0
而
g
′
′
(
x
0
)
=
K
2
⋅
2
(
a
−
c
)
+
f
′
′
(
x
0
)
(
c
−
a
)
g^{\prime\prime}(x_0)=\frac{K}{2}\cdot 2(a-c)+f^{\prime\prime}(x_0)(c-a)
g′′(x0)=2K⋅2(a−c)+f′′(x0)(c−a)
故
K
=
f
′
′
(
x
0
)
K=f^{\prime\prime}(x_0)
K=f′′(x0)
原式得证
参考文献
[1]微分中值定理的常数k值法[J] 李淑花 中南林学院 理学院。
[2]微分中值定理的常数k值法,知乎博主:勥巭炛,专栏:数学拾遗。