微分中值定理技巧,微分方程

微分方程构造辅助函数解中值定理

一阶线性微分方程构造辅助函数

设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,在开区间 ( a , b ) (a,b) (a,b)上可导。若证明的微分中值问题为:至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)使得
F ( ξ ) = f ′ ( ξ ) + p ( ξ ) f ( ξ ) − q ( ξ ) = 0 (1) F(\xi)=f^{\prime}(\xi)+p(\xi)f(\xi)-q(\xi)=0 \tag{1} F(ξ)=f(ξ)+p(ξ)f(ξ)q(ξ)=0(1)

其中 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)在闭区间 [ a , b ] [a,b] [a,b]上连续。

( 1 ) (1) (1)对应的微分方程为
f ′ ( x ) + p ( x ) f ( x ) = q ( x ) (2) f^{\prime}(x)+p(x)f(x)=q(x)\tag{2} f(x)+p(x)f(x)=q(x)(2)

通解为
f ( x ) = e − ∫ p ( x )   d x ( ∫ q ( x ) e ∫ p ( x )   d x   d x + C ) f(x)=e^{-\int p(x)\,{\rm d}x}\left(\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x+C\right) f(x)=ep(x)dx(q(x)ep(x)dxdx+C)

解出

C = f ( x ) e ∫ p ( x )   d x − ∫ q ( x ) e ∫ p ( x )   d x   d x C= f(x)e^{\int p(x)\,{\rm d}x}-\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x C=f(x)ep(x)dxq(x)ep(x)dxdx


H ( x ) = f ( x ) e ∫ p ( x )   d x − ∫ q ( x ) e ∫ p ( x )   d x   d x (3) H(x)= f(x)e^{\int p(x)\,{\rm d}x}-\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x \tag{3} H(x)=f(x)ep(x)dxq(x)ep(x)dxdx(3)

H ( x ) H(x) H(x)就为中值问题 ( 1 ) (1) (1)所对应的辅助函数

可降阶的二阶微分方程构造辅助函数

设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上二阶可导,若证明的微分中值问题为 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得
F ( ξ ) = f ′ ′ ( ξ ) + λ ( f ( ξ ) ) n = 0 (4) F(\xi)=f^{\prime\prime}(\xi)+\lambda(f(\xi))^{n}=0\tag{4} F(ξ)=f(ξ)+λ(f(ξ))n=0(4)
其中 λ , n \lambda,n λ,n为不等于零的常数。
( 4 ) (4) (4)对应的微分方程
f ′ ′ ( x ) + λ [ f ( x ) ] n = 0 (5) f^{\prime\prime}(x)+\lambda[f(x)]^{n}=0\tag{5} f(x)+λ[f(x)]n=0(5)

p ( f ( x ) ) = f ′ ( x ) p(f(x))=f^{\prime}(x) p(f(x))=f(x),则 f ′ ′ ( x ) = p ′ ( f ( x ) ) f ′ ( x ) = p ′ ( f ( x ) ) p ( f ( x ) ) f^{\prime\prime}(x)=p^{\prime}(f(x))f^{\prime}(x)= p^{\prime}(f(x)) p(f(x)) f(x)=p(f(x))f(x)=p(f(x))p(f(x))
方程 ( 5 ) (5) (5)化为
p ( f ( x ) ) p ′ ( f ( x ) ) + λ ( f ( x ) ) n = 0 (6) p(f(x))p^{\prime}(f(x))+\lambda(f(x))^{n}=0\tag{6} p(f(x))p(f(x))+λ(f(x))n=0(6)

解方程 ( 6 ) (6) (6)
1 2 ( f ′ ( x ) ) 2 + λ n + 1 ( f ( x ) ) n + 1 = C \frac{1}{2}(f^{\prime}(x))^{2}+\frac{\lambda}{n+1}(f(x))^{n+1}=C 21(f(x))2+n+1λ(f(x))n+1=C


H ( x ) = 1 2 ( f ′ ( x ) ) 2 + λ n + 1 ( f ( x ) ) n + 1 (7) H(x)= \frac{1}{2}(f^{\prime}(x))^{2}+\frac{\lambda}{n+1}(f(x))^{n+1}\tag{7} H(x)=21(f(x))2+n+1λ(f(x))n+1(7)

( 7 ) (7) (7)为中值定理问题 ( 4 ) (4) (4)所对应的辅助函数

关于此类微分中值等式的证明,在具体问题中需证明 f ′ ( ξ ) ≠ 0 f^{\prime}(\xi)\neq 0 f(ξ)=0,因为
H ′ ( x ) = f ′ ( x ) ( f ′ ′ ( x ) + λ [ f ( x ) ] n ) H^{\prime}(x)=f^{\prime}(x)\left(f^{\prime\prime}(x)+\lambda[f(x)]^{n}\right) H(x)=f(x)(f(x)+λ[f(x)]n)

所以,要结论成立就要求有 f ′ ( ξ ) ≠ 0 f^{\prime}(\xi)\neq 0 f(ξ)=0

例题

拓展阅读

[1]中值定理证明与辅助函数构造思路与方法(一)微信公众号:考研竞赛数学
[2]丁卫平等,一类微分中值辅助函数的构造及应用[J].湖南理工学院学报2019.9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值