微分方程构造辅助函数解中值定理
一阶线性微分方程构造辅助函数
设函数
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续,在开区间
(
a
,
b
)
(a,b)
(a,b)上可导。若证明的微分中值问题为:至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b)使得
F
(
ξ
)
=
f
′
(
ξ
)
+
p
(
ξ
)
f
(
ξ
)
−
q
(
ξ
)
=
0
(1)
F(\xi)=f^{\prime}(\xi)+p(\xi)f(\xi)-q(\xi)=0 \tag{1}
F(ξ)=f′(ξ)+p(ξ)f(ξ)−q(ξ)=0(1)
其中 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)在闭区间 [ a , b ] [a,b] [a,b]上连续。
式
(
1
)
(1)
(1)对应的微分方程为
f
′
(
x
)
+
p
(
x
)
f
(
x
)
=
q
(
x
)
(2)
f^{\prime}(x)+p(x)f(x)=q(x)\tag{2}
f′(x)+p(x)f(x)=q(x)(2)
通解为
f
(
x
)
=
e
−
∫
p
(
x
)
d
x
(
∫
q
(
x
)
e
∫
p
(
x
)
d
x
d
x
+
C
)
f(x)=e^{-\int p(x)\,{\rm d}x}\left(\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x+C\right)
f(x)=e−∫p(x)dx(∫q(x)e∫p(x)dxdx+C)
解出
C = f ( x ) e ∫ p ( x ) d x − ∫ q ( x ) e ∫ p ( x ) d x d x C= f(x)e^{\int p(x)\,{\rm d}x}-\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x C=f(x)e∫p(x)dx−∫q(x)e∫p(x)dxdx
令
H
(
x
)
=
f
(
x
)
e
∫
p
(
x
)
d
x
−
∫
q
(
x
)
e
∫
p
(
x
)
d
x
d
x
(3)
H(x)= f(x)e^{\int p(x)\,{\rm d}x}-\int{q(x)e^{\int p(x)\,{\rm d}x}}\,{\rm d}x \tag{3}
H(x)=f(x)e∫p(x)dx−∫q(x)e∫p(x)dxdx(3)
则 H ( x ) H(x) H(x)就为中值问题 ( 1 ) (1) (1)所对应的辅助函数
可降阶的二阶微分方程构造辅助函数
设函数
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]上二阶可导,若证明的微分中值问题为
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使得
F
(
ξ
)
=
f
′
′
(
ξ
)
+
λ
(
f
(
ξ
)
)
n
=
0
(4)
F(\xi)=f^{\prime\prime}(\xi)+\lambda(f(\xi))^{n}=0\tag{4}
F(ξ)=f′′(ξ)+λ(f(ξ))n=0(4)
其中
λ
,
n
\lambda,n
λ,n为不等于零的常数。
式
(
4
)
(4)
(4)对应的微分方程
f
′
′
(
x
)
+
λ
[
f
(
x
)
]
n
=
0
(5)
f^{\prime\prime}(x)+\lambda[f(x)]^{n}=0\tag{5}
f′′(x)+λ[f(x)]n=0(5)
设
p
(
f
(
x
)
)
=
f
′
(
x
)
p(f(x))=f^{\prime}(x)
p(f(x))=f′(x),则
f
′
′
(
x
)
=
p
′
(
f
(
x
)
)
f
′
(
x
)
=
p
′
(
f
(
x
)
)
p
(
f
(
x
)
)
f^{\prime\prime}(x)=p^{\prime}(f(x))f^{\prime}(x)= p^{\prime}(f(x)) p(f(x))
f′′(x)=p′(f(x))f′(x)=p′(f(x))p(f(x))
方程
(
5
)
(5)
(5)化为
p
(
f
(
x
)
)
p
′
(
f
(
x
)
)
+
λ
(
f
(
x
)
)
n
=
0
(6)
p(f(x))p^{\prime}(f(x))+\lambda(f(x))^{n}=0\tag{6}
p(f(x))p′(f(x))+λ(f(x))n=0(6)
解方程
(
6
)
(6)
(6)得
1
2
(
f
′
(
x
)
)
2
+
λ
n
+
1
(
f
(
x
)
)
n
+
1
=
C
\frac{1}{2}(f^{\prime}(x))^{2}+\frac{\lambda}{n+1}(f(x))^{n+1}=C
21(f′(x))2+n+1λ(f(x))n+1=C
令
H
(
x
)
=
1
2
(
f
′
(
x
)
)
2
+
λ
n
+
1
(
f
(
x
)
)
n
+
1
(7)
H(x)= \frac{1}{2}(f^{\prime}(x))^{2}+\frac{\lambda}{n+1}(f(x))^{n+1}\tag{7}
H(x)=21(f′(x))2+n+1λ(f(x))n+1(7)
( 7 ) (7) (7)为中值定理问题 ( 4 ) (4) (4)所对应的辅助函数
关于此类微分中值等式的证明,在具体问题中需证明
f
′
(
ξ
)
≠
0
f^{\prime}(\xi)\neq 0
f′(ξ)=0,因为
H
′
(
x
)
=
f
′
(
x
)
(
f
′
′
(
x
)
+
λ
[
f
(
x
)
]
n
)
H^{\prime}(x)=f^{\prime}(x)\left(f^{\prime\prime}(x)+\lambda[f(x)]^{n}\right)
H′(x)=f′(x)(f′′(x)+λ[f(x)]n)
所以,要结论成立就要求有 f ′ ( ξ ) ≠ 0 f^{\prime}(\xi)\neq 0 f′(ξ)=0。
例题
拓展阅读
[1]中值定理证明与辅助函数构造思路与方法(一)微信公众号:考研竞赛数学
[2]丁卫平等,一类微分中值辅助函数的构造及应用[J].湖南理工学院学报2019.9