拉普拉斯变换

拉普拉斯变换

拉普拉斯变换是为了纪念伟大的法国数学家皮埃尔·西蒙·德拉普拉斯(Pierre Simon De Laplace,1749-1827)而命名的。 与所有变换一样,拉普拉斯变换根据一组固定的规则或方程将一个信号变为另一个信号。 将微分方程转换为代数方程的最佳方法是使用拉普拉斯变换。
拉普拉斯变换在控制系统工程中起着重要作用。 为了分析控制系统,必须进行不同函数的拉普拉斯变换。 拉普拉斯变换和拉普拉斯逆变换的性质都用于分析动态控制系统。 在本文中,我们将详细讨论拉普拉斯变换的定义、其公式、性质、拉普拉斯变换表及其应用。
拉普拉斯变换还可以让我们深入了解我们正在处理的方程的本质。可以看作是时域和频域之间的转换。例如,取标准方程
m x ′ ′ ( t ) + c x ( t ) + k x ( t ) = f ( t ) mx^{''}(t)+cx(t)+kx(t)=f(t) mx′′(t)+cx(t)+kx(t)=f(t)
我们可以将 t t t看作时间和 f ( t ) f(t) f(t)作为输入信号。拉普拉斯变换会将方程从时间微分方程转换为代数(无导数)方程,其中新的自变量 s s s是频率。
我们可以将_拉普拉斯变换_视为一个黑匣子,它输入一个时域的函数准换为新变量的一个频域的函数。对于函数 f ( t ) f(t) f(t)的拉普拉斯变换我们可以写作 L { f ( t ) } = F ( s ) \mathcal{L} \{f(t)\}=\mathrm {F}(s) L{f(t)}=F(s),通常用小写字母表示时域中的函数,用大写字母表示频域中的函数。我们使用相同的字母来表示一个函数是另一个函数的拉普拉斯变换。例如 F ( s ) \mathrm {F}(s) F(s) f ( t ) f(t) f(t)的拉普拉斯变换。让我们定义拉普拉斯变换:
L { f ( t ) } = F ( s ) = ∫ 0 ∞ e − s t f ( t ) d t . \mathcal{L} \{f(t)\}=\mathrm {F}(s)=\int_{0}^{\infty } e^{-st} f(t)dt. L{f(t)}=F(s)=0estf(t)dt.
我们注意到我们只考虑 t ≥ 0 t\ge 0 t0在变换中。当然,如果我们想到 t t t当时间没有问题时,我们通常有兴趣了解未来会发生什么(拉普拉斯变换是一个可以安全地忽略过去的地方)。
以下是常用拉普拉斯变换表:
image.png
以下是拉普拉斯变换的性质
image.png

拉普拉斯逆变换

正如我们所说,拉普拉斯变换将使我们能够将微分方程转换为代数方程。一旦我们在频域中求解代数方程,我们将希望回到时域,因为这才是我们感兴趣的。
给定一个函数 F ( s ) F(s) F(s),我们希望找到一个函数 f ( t ) f(t) f(t)使得 L { f ( t ) } = F ( s ) \mathcal{L}\{f(t)\}=F(s) L{f(t)}=F(s)。将拉普拉斯逆变换定义为
$\mathcal{L}^{-`}{F(s)}=f(t)$1708432579030)
下面是逆变化表
image.png
我们使用变换表、逆变换表和拉普拉斯性质计算拉普拉斯变换和拉普拉斯逆变换。

使用拉普拉斯变换解决微分方程

拉普拉斯变换是数学中的一种积分变换,常用于工程和物理学中的系统分析。它可以将微分方程转换为代数方程,简化了求解的过程。以下是使用拉普拉斯变换解决常微分方程的一般步骤:

  1. 对方程两边进行拉普拉斯变换
    将微分方程中的每一项都转换为它们的拉普拉斯变换。拉普拉斯变换将函数 f ( t ) f(t) f(t) 转换为函数 F ( s ) F(s) F(s),其中 s s s是复数变量。时间域中的微分操作对应于频域中的代数操作:
    L f ′ ( t ) = s F ( s ) − f ( 0 ) \mathcal{L}{f'(t)} = sF(s) - f(0) Lf(t)=sF(s)f(0)
    L f ′ ′ ( t ) = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) \mathcal{L}{f''(t)} = s^2F(s) - sf(0) - f'(0) Lf′′(t)=s2F(s)sf(0)f(0)
    ○ 依此类推,对于更高阶导数。
  2. 代入初始条件
    如果微分方程包含初始条件(如初始位移、初始速度等),则在变换过程中将其代入方程中。
  3. 求解代数方程
    变换后得到的通常是一个关于 s s s 的代数方程。你可以使用代数技巧求解这个方程,得到 F ( s ) F(s) F(s),这是原始函数 f ( t ) f(t) f(t) 的拉普拉斯变换形式。
  4. 进行拉普拉斯逆变换
    找到 ( F(s) ) 后,再使用拉普拉斯逆变换将其转换回时间域的函数 f ( t ) f(t) f(t)。这通常需要查找表或者理解拉普拉斯变换的复杂路径积分理论。
    例如,考虑一个简单的一阶线性微分方程:
    d y ( t ) d t + a y ( t ) = f ( t ) \frac{dy(t)}{dt} + ay(t) = f(t) dtdy(t)+ay(t)=f(t)
    其中 a a a是一个常数, f ( t ) f(t) f(t)是输入函数, y ( t ) y(t) y(t) 是输出函数。
  5. 对方程两边应用拉普拉斯变换:
    L { d y ( t ) d t } + L a y ( t ) = L f ( t ) \mathcal{L}\{\frac{dy(t)}{dt}\} + \mathcal{L}{ay(t)} = \mathcal{L}{f(t)} L{dtdy(t)}+Lay(t)=Lf(t)
  6. 应用拉普拉斯变换的微分性质和线性性质:
    s Y ( s ) − y ( 0 ) + a Y ( s ) = F ( s ) sY(s) - y(0) + aY(s) = F(s) sY(s)y(0)+aY(s)=F(s)
    这里 Y ( s ) = L y ( t ) Y(s) = \mathcal{L}{y(t)} Y(s)=Ly(t) F ( s ) = L f ( t ) F(s) = \mathcal{L}{f(t)} F(s)=Lf(t)
  7. 如果给定了初始条件 y ( 0 ) y(0) y(0),将其代入方程中并解出 Y ( s ) Y(s) Y(s)
    Y ( s ) = F ( s ) + y ( 0 ) s + a Y(s) = \frac{F(s) + y(0)}{s + a} Y(s)=s+aF(s)+y(0)
  8. Y ( s ) Y(s) Y(s) 进行拉普拉斯逆变换以找到 y ( t ) y(t) y(t)
    y ( t ) = L − 1 { F ( s ) + y ( 0 ) s + a } y(t) = \mathcal{L}^{-1}\{\frac{F(s) + y(0)}{s + a}\} y(t)=L1{s+aF(s)+y(0)}
    最终结果会根据输入函数 f ( t ) f(t) f(t)和初始条件 y ( 0 ) y(0) y(0) 而有所不同。
    这就是使用拉普拉斯变换解常微分方程的基本流程。对于复杂方程,流程可能需要额外的步骤来处理更高阶的导数或更复杂的边界条件。

一阶线性常微分方程示例

当然,让我们通过拉普拉斯变换来解一个简单的一阶线性常微分方程的例子。考虑以下的初值问题:
d y ( t ) d t + y ( t ) = cos ⁡ ( t ) , y ( 0 ) = 0 \frac{dy(t)}{dt} + y(t) = \cos(t), \quad y(0) = 0 dtdy(t)+y(t)=cos(t),y(0)=0
这里我们有一个微分方程和一个初始条件。我们的目标是找到 ( y(t) ) 的表达式。按照上述步骤:

  1. 对方程两边进行拉普拉斯变换:
    L { d y ( t ) d t } + L y ( t ) = L cos ⁡ ( t ) \mathcal{L}\{\frac{dy(t)}{dt}\} + \mathcal{L}{y(t)} = \mathcal{L}{\cos(t)} L{dtdy(t)}+Ly(t)=Lcos(t)
  2. 使用拉普拉斯变换的性质:
    s Y ( s ) − y ( 0 ) + Y ( s ) = s s 2 + 1 sY(s) - y(0) + Y(s) = \frac{s}{s^2 + 1} sY(s)y(0)+Y(s)=s2+1s
    由于 y ( 0 ) = 0 y(0) = 0 y(0)=0,所以 s Y ( s ) − 0 + Y ( s ) = s s 2 + 1 sY(s) - 0 + Y(s) = \frac{s}{s^2 + 1} sY(s)0+Y(s)=s2+1s
  3. 将方程整理为 Y ( s ) Y(s) Y(s)的表达式:
    Y ( s ) ( s + 1 ) = s s 2 + 1 Y(s)(s + 1) = \frac{s}{s^2 + 1} Y(s)(s+1)=s2+1s
    Y ( s ) = s ( s 2 + 1 ) ( s + 1 ) Y(s) = \frac{s}{(s^2 + 1)(s + 1)} Y(s)=(s2+1)(s+1)s
  4. Y ( s ) Y(s) Y(s) 进行部分分式分解:
    Y ( s ) = A s + 1 + B s + C s 2 + 1 Y(s) = \frac{A}{s + 1} + \frac{Bs + C}{s^2 + 1} Y(s)=s+1A+s2+1Bs+C
    通过比较系数,可以找到 A A A B B B,和 C C C的值。通过设定 s = − 1 s=-1 s=1 可以直接求得 A A A,然后解出 B B B C C C 来匹配原方程的系数。假设我们已经计算得到 A = 1 2 A = \frac{1}{2} A=21 B = 1 2 B = \frac{1}{2} B=21 C = 0 C = 0 C=0,所以我们有:
    Y ( s ) = 1 / 2 s + 1 + 1 / 2 ⋅ s s 2 + 1 Y(s) = \frac{1/2}{s + 1} + \frac{1/2 \cdot s}{s^2 + 1} Y(s)=s+11/2+s2+11/2s
  5. 进行拉普拉斯逆变换:
    y ( t ) = L − 1 { 1 / 2 s + 1 } + L − 1 { 1 / 2 ⋅ s s 2 + 1 } y(t) = \mathcal{L}^{-1}\{\frac{1/2}{s + 1}\} + \mathcal{L}^{-1}\{\frac{1/2 \cdot s}{s^2 + 1}\} y(t)=L1{s+11/2}+L1{s2+11/2s}
    y ( t ) = 1 2 e − t + 1 2 cos ⁡ ( t ) y(t) = \frac{1}{2}e^{-t} + \frac{1}{2}\cos(t) y(t)=21et+21cos(t)
    这是微分方程 d y ( t ) d t + y ( t ) = cos ⁡ ( t ) , y ( 0 ) = 0 \frac{dy(t)}{dt} + y(t) = \cos(t), y(0) = 0 dtdy(t)+y(t)=cos(t),y(0)=0 的解。
    这个例子显示了如何使用拉普拉斯变换将微分方程转换为容易求解的代数方程,并通过拉普拉斯逆变换得到原始函数的解。在实际应用中,拉普拉斯变换表和计算工具常用来简化这些步骤。

二阶线性常微分方程示例

这里有一个关于如何使用拉普拉斯变换来解一个二阶线性常微分方程的例子。考虑以下方程及其初始条件:
d 2 y ( t ) d t 2 + 5 d y ( t ) d t + 6 y ( t ) = sin ⁡ ( t ) , y ( 0 ) = 1 , y ′ ( 0 ) = 0 \frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \sin(t), \quad y(0) = 1, \quad y'(0) = 0 dt2d2y(t)+5dtdy(t)+6y(t)=sin(t),y(0)=1,y(0)=0
步骤如下:

  1. 对方程两边进行拉普拉斯变换:
    L { d 2 y ( t ) d t 2 } + 5 L { d y ( t ) d t } + 6 L y ( t ) = L sin ⁡ ( t ) \mathcal{L}\{\frac{d^2y(t)}{dt^2}\} + 5\mathcal{L}\{\frac{dy(t)}{dt}\} + 6\mathcal{L}{y(t)} = \mathcal{L}{\sin(t)} L{dt2d2y(t)}+5L{dtdy(t)}+6Ly(t)=Lsin(t)
  2. 利用拉普拉斯变换的性质,并带入初始条件:
    s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + 5 [ s Y ( s ) − y ( 0 ) ] + 6 Y ( s ) = 1 s 2 + 1 s^2Y(s) - sy(0) - y'(0) + 5[sY(s) - y(0)] + 6Y(s) = \frac{1}{s^2 + 1} s2Y(s)sy(0)y(0)+5[sY(s)y(0)]+6Y(s)=s2+11
    s 2 Y ( s ) − s + 5 s Y ( s ) − 5 + 6 Y ( s ) = 1 s 2 + 1 s^2Y(s) - s + 5sY(s) - 5 + 6Y(s) = \frac{1}{s^2 + 1} s2Y(s)s+5sY(s)5+6Y(s)=s2+11
    Y ( s ) ( s 2 + 5 s + 6 ) = 1 s 2 + 1 + s + 5 Y(s)(s^2 + 5s + 6) = \frac{1}{s^2 + 1} + s + 5 Y(s)(s2+5s+6)=s2+11+s+5
  3. 求解 Y ( s ) Y(s) Y(s)
    Y ( s ) = s + 6 ( s 2 + 1 ) ( s + 2 ) ( s + 3 ) Y(s) = \frac{s + 6}{(s^2 + 1)(s + 2)(s + 3)} Y(s)=(s2+1)(s+2)(s+3)s+6
  4. Y ( s ) Y(s) Y(s) 进行部分分式分解:
    Y ( s ) = A s + 2 + B s + 3 + C s + D s 2 + 1 Y(s) = \frac{A}{s + 2} + \frac{B}{s + 3} + \frac{Cs + D}{s^2 + 1} Y(s)=s+2A+s+3B+s2+1Cs+D
    通过求解一系列的方程来找到 A A A B B B C C C,和 D D D 的值。假设我们通过部分分式分解求出了这些值。
  5. 进行拉普拉斯逆变换:
    假设我们找到了合适的分解,可以得到类似以下形式的结果:
    Y ( s ) = A s + 2 + B s + 3 + C s 2 + 1 Y(s) = \frac{A}{s + 2} + \frac{B}{s + 3} + \frac{C}{s^2 + 1} Y(s)=s+2A+s+3B+s2+1C
    其中 A , B , C A, B, C A,B,C是常数。现在,使用拉普拉斯逆变换的已知公式来找到 y ( t ) y(t) y(t)
    y ( t ) = A L − 1 { 1 s + 2 } + B L − 1 { 1 s + 3 } + C L − 1 { s s 2 + 1 } + D L − 1 { 1 s 2 + 1 } y(t) = A\mathcal{L}^{-1}\{\frac{1}{s + 2}\} + B\mathcal{L}^{-1}\{\frac{1}{s + 3}\} + C\mathcal{L}{-1}\{\frac{s}{s2 + 1}\} + D\mathcal{L}{-1}\{\frac{1}{s2 + 1}\} y(t)=AL1{s+21}+BL1{s+31}+CL1{s2+1s}+DL1{s2+11}
    y ( t ) = A e − 2 t + B e − 3 t + C cos ⁡ ( t ) + D sin ⁡ ( t ) y(t) = Ae^{-2t} + Be^{-3t} + C\cos(t) + D\sin(t) y(t)=Ae2t+Be3t+Ccos(t)+Dsin(t)
    具体的 A , B , C , D A, B, C, D A,B,C,D的值需要通过部分分式分解求出。本例中我们没有给出详细的分解步骤和最终的解,因为这通常需要做一些代数计算,但是这个过程展示了拉普拉斯变换在解决二阶微分方程中的应用。实际操作中可以使用数学软件来协助计算。
  • 19
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值