CUDA/GPU下矩阵乘法的几种实现的C++源码

 

环境:CUDA toolkit3.2+Windows XP+CUDA SDK中的vs2008模板release编译通过,显卡是GeForce GT240。大家可根据自己的情况进行测试,报告一下结果吧.


不同规模的运行结果:
矩阵阶数为 512,简单方法: 0.033887s(7.922Gflops),块方法: 0.008424s(31.865Gflops),块+循环展开方法: 0.003995s(67.191Gflops),块+线程粒度2: 0.008091s(33.179Gflops),块+循环展开方法+线程粒度2: 0.003399s(78.984Gflops)

矩阵阶数为1024,简单方法: 0.264424s(8.121Gflops),块方法: 0.066201s(32.439Gflops),块+循环展开方法: 0.030827s(69.662Gflops),块+线程粒度2: 0.063264s(33.945Gflops),块+循环展开方法+线程粒度2: 0.026282s(81.710Gflops)

矩阵阶数为2048,简单方法: 2.112513s(8.132Gflops),块方法: 0.527002s(32.599Gflops),块+循环展开方法: 0.244058s(70.392Gflops),块+线程粒度2: 0.505495s(33.986Gflops),块+循环展开方法+线程粒度2: 0.208845s(82.261Gflops)

矩阵阶数为4096,简单方法: 17.705070s(7.763Gflops),块方法: 4.205308s(32.682Gflops),块+循环展开方法: 1.966043s(69.906Gflops),块+线程粒度2: 4.059064s(33.860Gflops),块+循环展开方法+线程粒度2: 1.677771s(81.918Gflops) 

 

测试结果表明在块大小16x16时,块方法和循环展开对速度有很显著的影响,而线程粒度的使用对速度只有很小的提高。而块大小是8x8时的情形没有测试,线程粒度对速度应该有较大影响,家可以做一做。

 

参考文献: David B. Kirk, Wen-mei W. Hwu. 大规模并行处理器编程实战[M]. 北京: 清华大学出版社, 2010.

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值