【无人机】通过中心辐射的无人机包裹递送K-means 和遗传算法(Matlab实现)

“在代码的海洋里,有无尽的知识等待你去发现。我就是那艘领航的船,带你乘风破浪,驶向代码的彼岸。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

在现代物流体系中,无人机配送作为一种创新的物流解决方案,正在逐渐崭露头角。尤其在偏远地区或交通不便的环境下,无人机能够提供快速、灵活的配送服务。然而,为了最大化配送效率和成本效益,合理规划仓库位置和无人机的配送路径是至关重要的。本文将探讨如何通过结合K-means算法和遗传算法(GA)来解决这一问题,以实现中心辐射型无人机配送系统的优化。

确定最佳仓库位置:K-means算法的应用

K-means算法是一种有效的聚类分析方法,用于将数据集分割成K个组,每个组由最接近其质心的数据点构成。在无人机配送系统中,K-means算法可以用于确定最佳的仓库位置。具体而言,算法首先会将所有的客户位置视为数据点,然后通过多次迭代,寻找能够最小化各客户到所属仓库平均距离的K个质心,这些质心即为推荐的仓库位置。这一过程能够确保仓库位于能够高效服务其覆盖范围内所有客户的最佳位置。

配送路径优化:遗传算法的作用

一旦仓库位置确定,接下来的挑战是如何规划从仓库到每个客户站点的最优配送路径。遗传算法(GA)作为一种启发式搜索算法,借鉴了达尔文的自然选择和遗传学原理,非常适合解决这类问题。在无人机配送路径规划中,GA通过编码每条可能的配送路线,然后通过选择、交叉和变异等操作,不断演化生成新的配送方案。在每一代迭代中,算法都会评估每条路线的成本(如飞行时间、能耗等),并保留那些成本最低的路线。经过多代迭代,GA最终会收敛到一组(近)最优的配送路径,这些路径能够确保无人机在满足其范围和载重限制的前提下,完成对所有客户的配送任务。

📚2 运行结果

部分代码:

%   are launch sites for the drones.  Depots can be a static platform, a 
%   truck, a barge, a ship or another aircraft. The idea is to find the
%   best depot locations using k-means and then optimally routing each 
%   of the drones around its respective depot such that the total distance
%   traveled by the drones is minimized.  Each customer (stop) is visited
%   exactly once by its drone.


% Summary:
%     1. Each drone has the capability to deliver from its assigned depot
%     constrained by range (1/2 drone range for ingress 
%     and egress)
%     2. For each stop, a customer is visited by a drone which is launched
%        from the dopot, travels to the customer stop, then returns to 
%        the depot.  A drone is constrained by range from depot and 
%        capacity or number of parcels.  A drone may deliver to n-customers
%        in one sortie based on drone capacity and range.
%     3. Entire algorithm is based on centering depots around k-means
%        centroids, then creating routes for the drones around these
%        centroids (depots) such that the time is minimized.
%
% INPUT Parameters: Structured or "Default" Inputs
% Input:
%     USERCONFIG (structure) with zero or more of the following fields:
%     defaultConfig.nCities     = 30;     %number stops
%     defaultConfig.capacity    = 3;      %drone capacity (1,2,3)
%     defaultConfig.range       = 4;     %(10, 15, 20)
%     defaultConfig.nHubs       = 5;      %Number of depots (centroids)
%     defaultConfig.speed       = 2;      %drone speed factor of truck =1
%     defaultConfig.energy      = 5e4;    %(drone 5e4, 1e5, 2e5)
%     defaultConfig.energyP     = 5e4;    %(drone 5e4, 1e5, 1.3e4) 
%     defaultConfig.energyT     = 8.08e6; %(truck 8.08e6, 6.0e6)
%     defaultConfig.energyTP    = 4.04e4; %(truck , 4.04e4, 1.2e5) 
%     defaultConfig.cost        = .04;    % $0.04, $0.08, $0.20
%     defaultConfig.costT       = .70;    % $0.70, $0.40
%     defaultConfig.xy          =         % x,y coordinates of stops
%     defaultConfig.dmat        = [];     %dist matrix
%     defaultConfig.popSize     = 200;    %population size
%     defaultConfig.numIter     = 2.5e2;  %1.25e3; %iterations 
%     defaultConfig.showProg    = true;   %show progress of route
%     defaultConfig.showResult  = true;   %show results on completion
%     defaultConfig.showWaitbar = false;  %show wait bar
%
% Input Notes:
%     1. Rather than passing in a structure containing these fields, any/all of
%        these inputs can be passed in as parameter/value pairs in any order instead.
%     2. Field/parameter names are case insensitive but must match exactly otherwise.
%
% Output:
%     RESULTSTRUCT (structure) with the following fields:
%             'xy',          xy, ...
%             'dmat',        dmat, ...
%             'nHubs',       nHubs, ...
%             'minTour',     minTour, ...
%             'popSize',     popSize, ...
%             'numIter',     numIter, ...
%             'showProg',    showProg, ...
%             'showResult',  showResult, ...
%             'showWaitbar', showWaitbar, ...
%             'optRoute',    optRoute, ...
%             'optBreak',    optBreak, ...
%             'nCities',     nCities, ...
%             'cap',         cap, ...
%             'range',       range, ...
%             'speed',       speed, ...
%             'cost',        cost, ...
%             'costT',       costT, ...
%             'energy',      energy, ...
%             'energyT',     energyT, ...
%             'energyP',     energyP, ...
%             'energyTP',    energyTP, ...
%             'minEnergy',   minEnergy, ...
%             'minEnergyP',  minEnergyP, ...
%             'minCost',     minCost, ...
%             'minTime',     minTime, ...
%             'minDist',     minDist);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]贺云涛,樊天仰,徐军,等.无人机飞行控制原型实验设计与实践[J/OL].实验室研究与探索:1-6[2024-07-17].http://kns.cnki.net/kcms/detail/31.1707.T.20240712.1734.008.html.

[2]杨振,李琳,柴仕元,等.面向多战术需求的无人机空战自主规避机动方法[J/OL].航空学报:1-18[2024-07-17].http://kns.cnki.net/kcms/detail/11.1929.v.20240715.1356.004.html.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值