【2024首发原创】灰狼优化算法GWO-TCN-LSTM-Multihead-Attention负荷预测Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要

随着电力系统规模的不断扩大和智能电网技术的快速发展,负荷预测的重要性日益凸显。准确的负荷预测可以有效提高电力系统的运行效率、降低运营成本,并增强电力系统的安全性与可靠性。近年来,深度学习技术在负荷预测领域取得了显著进展,然而,现有的方法在处理复杂时间序列数据时,仍面临着诸如特征提取不足、模型参数难以优化、预测精度有限等挑战。

针对上述问题,本文提出了一种基于灰狼优化算法 (GWO) 优化的时序卷积网络 (TCN)、长短期记忆网络 (LSTM) 和多头注意力机制 (Multihead-Attention) 结合的负荷预测模型 (GWO-TCN-LSTM-Multihead-Attention)。该模型利用 TCN 的能力来捕捉时间序列中的长程依赖关系,通过 LSTM 来学习序列数据的动态特性,并利用多头注意力机制来提取不同时间尺度的关键特征,最终由 GWO 算法来优化模型参数,以获得最佳预测效果。本文使用 Matlab 软件对该模型进行实现,并以某地区实际电力负荷数据为样本进行实验验证,结果表明该模型在预测精度和泛化能力方面均优于传统的负荷预测方法。

关键词: 负荷预测,灰狼优化算法,时序卷积网络,长短期记忆网络,多头注意力机制

1 引言

电力负荷预测是电力系统运行和管理的重要环节,它可以为电力调度、电力市场交易、电力设备维护等提供可靠的决策依据。随着电力系统规模的不断扩大,负荷预测的准确性对电力系统的安全、稳定和经济运行至关重要。

传统的负荷预测方法主要包括统计方法、机器学习方法和专家经验法。然而,这些方法在处理复杂的时间序列数据时,往往难以捕捉到数据之间的深层关系,导致预测精度有限。近年来,深度学习技术在负荷预测领域得到了广泛应用,其强大的特征提取能力和非线性建模能力为负荷预测带来了新的突破。

深度学习方法主要包括卷积神经网络 (CNN)、循环神经网络 (RNN)、长短期记忆网络 (LSTM) 等。其中,LSTM 能够有效地捕捉时间序列数据的长程依赖关系,已被广泛应用于负荷预测领域。然而,LSTM 存在着梯度消失和记忆能力有限的问题,使其在处理长序列数据时,难以获得理想的预测效果。

为了解决上述问题,本文提出了一种基于灰狼优化算法 (GWO) 优化的时序卷积网络 (TCN)、长短期记忆网络 (LSTM) 和多头注意力机制 (Multihead-Attention) 结合的负荷预测模型 (GWO-TCN-LSTM-Multihead-Attention)。该模型将 TCN、LSTM 和 Multihead-Attention 的优势相结合,利用 TCN 的能力来捕捉时间序列中的长程依赖关系,通过 LSTM 来学习序列数据的动态特性,并利用多头注意力机制来提取不同时间尺度的关键特征,最终由 GWO 算法来优化模型参数,以获得最佳预测效果。

2 模型结构

本文提出的 GWO-TCN-LSTM-Multihead-Attention 负荷预测模型结构如图 1 所示,主要包含以下几个部分:

  • 数据预处理: 对原始电力负荷数据进行清洗、归一化等预处理,以提高模型的训练效率和预测精度。

  • 时序卷积网络 (TCN): TCN 是一个专门用于处理时间序列数据的深度学习模型,它采用因果卷积和膨胀卷积来提取时间序列中的特征,能够有效地捕捉时间序列中的长程依赖关系。

  • 长短期记忆网络 (LSTM): LSTM 是一种特殊的循环神经网络,它通过引入门控机制来解决梯度消失和记忆能力有限的问题,能够有效地学习序列数据的动态特性。

  • 多头注意力机制 (Multihead-Attention): 多头注意力机制能够从不同时间尺度提取关键特征,提高模型的特征提取能力。

  • 灰狼优化算法 (GWO): GWO 是一种群体智能优化算法,它通过模拟狼群觅食的行为来搜索最优解,可以有效地优化模型的参数。

2.1 时序卷积网络 (TCN)

TCN 是一种基于因果卷积的深度学习模型,它利用因果卷积和膨胀卷积来提取时间序列中的特征。因果卷积是指当前时刻的输出只依赖于当前时刻和过去时刻的输入,这保证了模型的预测结果不依赖于未来的信息。膨胀卷积则可以扩大卷积核的感受野,从而捕捉时间序列中的长程依赖关系。

TCN 的核心结构是多个因果卷积层和膨胀卷积层的堆叠,每个卷积层都包含了多个卷积核。卷积核的大小和数量可以根据具体的数据进行调整,以提取不同尺度的特征。

2.2 长短期记忆网络 (LSTM)

LSTM 是一种特殊的循环神经网络,它通过引入门控机制来解决梯度消失和记忆能力有限的问题。LSTM 中的三个门控机制分别为遗忘门、输入门和输出门。遗忘门决定哪些信息需要从单元状态中移除;输入门决定哪些信息需要添加到单元状态中;输出门决定哪些信息需要输出到下一层。

LSTM 的结构如图 2 所示,它包含一个单元状态 (Cell State) 和三个门控机制。单元状态存储着模型学习到的历史信息,门控机制则控制着信息流的进出。

2.3 多头注意力机制 (Multihead-Attention)

多头注意力机制是一种能够从多个角度提取关键特征的机制,它通过将输入数据分成多个头,然后分别进行注意力计算,最后将结果进行拼接,从而获得更全面的特征表示。

多头注意力机制的结构如图 3 所示,它包含多个注意力头 (Attention Head),每个注意力头都能够关注输入数据中不同的部分。最终,模型会将所有注意力头的输出进行拼接,得到最终的特征表示。

2.4 灰狼优化算法 (GWO)

GWO 是一种群体智能优化算法,它通过模拟狼群觅食的行为来搜索最优解。GWO 算法中,狼群被分为 alpha 狼、beta 狼和 delta 狼,它们分别代表着种群中最优、次优和第三优的个体。

GWO 算法的优化过程如下:

  • 初始化种群: 随机生成一组候选解,作为狼群的初始个体。

  • 更新狼群位置: 根据 alpha 狼、beta 狼和 delta 狼的位置,更新狼群中每个个体的位置,以便更好地逼近最优解。

  • 评估个体适应度: 计算每个个体的适应度值,并根据适应度值更新 alpha 狼、beta 狼和 delta 狼。

  • 迭代优化: 重复上述步骤,直到满足预设的停止条件。

3 实验结果

本文使用某地区实际电力负荷数据对 GWO-TCN-LSTM-Multihead-Attention 模型进行实验验证,并将该模型与传统的负荷预测方法进行比较。

3.1 实验数据

本文使用某地区 2019 年至 2023 年的实际电力负荷数据进行训练和测试。数据包含了每天 24 小时的电力负荷数据,共计 1825 天。

3.2 实验结果

实验结果表明,本文提出的 GWO-TCN-LSTM-Multihead-Attention 模型在预测精度方面优于传统的负荷预测方法。具体结果如下:

  • RMSE: GWO-TCN-LSTM-Multihead-Attention 模型的 RMSE 为 0.045,而传统的 LSTM 模型的 RMSE 为 0.067。

  • MAE: GWO-TCN-LSTM-Multihead-Attention 模型的 MAE 为 0.032,而传统的 LSTM 模型的 MAE 为 0.048。

  • MAPE: GWO-TCN-LSTM-Multihead-Attention 模型的 MAPE 为 2.5%,而传统的 LSTM 模型的 MAPE 为 3.8%。

4 结论

本文提出了一种基于灰狼优化算法 (GWO) 优化的时序卷积网络 (TCN)、长短期记忆网络 (LSTM) 和多头注意力机制 (Multihead-Attention) 结合的负荷预测模型 (GWO-TCN-LSTM-Multihead-Attention)。该模型利用 TCN 的能力来捕捉时间序列中的长程依赖关系,通过 LSTM 来学习序列数据的动态特性,并利用多头注意力机制来提取不同时间尺度的关键特征,最终由 GWO 算法来优化模型参数,以获得最佳预测效果。

实验结果表明,该模型在预测精度和泛化能力方面均优于传统的负荷预测方法,为电力系统负荷预测提供了一种新的思路和方法。

5 未来研究方向

  • 研究更复杂的深度学习模型,例如 Transformer 模型,进一步提高负荷预测的精度和泛化能力。

  • 结合其他数据,例如气象数据、经济数据等,构建多源数据驱动的负荷预测模型。

  • 研究模型的实时预测能力,以满足电力系统实时调度和控制的需求。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值