基于遗传算法求解时间约束物流企业运输成本优化问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 问题描述

在物流运输中,企业经常面临着时间约束和运输成本优化的问题。时间约束是指货物必须在规定的时间内送达目的地,而运输成本优化是指在满足时间约束的前提下,尽可能降低运输成本。

2. 遗传算法简介

遗传算法是一种模拟生物进化过程的优化算法。它通过不断迭代,逐步优化目标函数的值。遗传算法的基本步骤如下:

  1. 初始化种群:随机生成一组解作为初始种群。

  2. 评估种群:计算每个解的目标函数值。

  3. 选择:根据目标函数值,选择最优的解作为父母。

  4. 交叉:将两个父母的基因片段进行交换,生成新的解。

  5. 变异:对新的解进行随机扰动,以增加种群的多样性。

  6. 重复步骤2-5,直到达到终止条件。

3. 遗传算法求解时间约束物流企业运输成本优化问题

将遗传算法应用于时间约束物流企业运输成本优化问题,可以分为以下几个步骤:

  1. 编码:将问题中的变量编码成染色体。例如,可以将货物的配送顺序编码成染色体,也可以将运输路线编码成染色体。

  2. 目标函数:定义目标函数,以衡量运输成本和时间约束的满足程度。例如,目标函数可以定义为:

 

f(x) = w1 * C(x) + w2 * T(x)

其中,x是染色体,C(x)是运输成本,T(x)是时间约束满足程度,w1和w2是权重系数。 3. 选择:根据目标函数值,选择最优的解作为父母。例如,可以使用轮盘赌选择法或锦标赛选择法。 4. 交叉:将两个父母的基因片段进行交换,生成新的解。例如,可以使用单点交叉法或双点交叉法。 5. 变异:对新的解进行随机扰动,以增加种群的多样性。例如,可以使用位翻转变异法或插入变异法。 6. 重复步骤2-5,直到达到终止条件。例如,可以设置最大迭代次数或目标函数值达到收敛条件作为终止条件。​​

📣 部分代码

function new=mutation(child,pmutation)global vehicle;global customer;if rand<pmutation    new=zeros(2,16);    for i=1:2        while sum(new(i,:))==0            fa=child(i,:);            index1=0;            index2=0;            while index1==index2                index1=ceil(rand*length(fa));                index2=ceil(rand*length(fa));            end            index=[index1,index2];            index=sort(index);            cus1=fa(index(1));            cus2=fa(index(2));            fa(index(2))=cus1;            fa(index(1))=cus2;            [path,path_ne]=decode(fa);            j=1;            while j<=size(path,1)                dc=setdiff(path(j,:),0,'stable');                weight=sum(customer(2,dc));                if weight>vehicle(2,j)                    break                end                j=j+1;            end            if j==8                new(i,:)=fa;            end        end    endelse    new=child;end

⛳️ 运行结果

🔗 参考文献

4. 算例分析

为了验证遗传算法求解时间约束物流企业运输成本优化问题的有效性,我们设计了一个算例。算例中,有10个货物需要配送,每个货物的配送时间和配送成本都已知。此外,还规定了货物的配送顺序必须满足时间约束。

我们将遗传算法应用于该算例,并与贪婪算法和模拟退火算法进行了比较。实验结果表明,遗传算法在求解时间约束物流企业运输成本优化问题方面具有较好的性能。

5. 结论

遗传算法是一种强大的优化算法,可以有效地求解时间约束物流企业运输成本优化问题。遗传算法具有鲁棒性强、全局搜索能力强等优点,因此在物流运输领域具有广阔的应用前景。

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值