【优化装箱】基于遗传算法求解集装箱船配载优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

当今社会,海上运输业在世界贸易领域占据了绝对的份额,对世界各国经济的发展起着巨大的推动作用.集装箱运输已成为海上运输的一种最重要的形式,并逐步迈向全球化和自动化.为提高作业效率和节约成本,集装箱船舶的配载问题成为关系集装箱运输的核心竞争力和关键技术之一,现已成为相关行业领域和学术界的研究热点. 集装箱船舶配载问题可以归结为一个复杂的非线性组合优化问题,即在满足各种约束前提下,合理安排集装箱在船舶上的具体位置,使得配载后到港装卸的倒箱量等指标最优.在配载过程中,不仅要考虑配载规则的布局性能约束,还要考虑船舶的安全性能约束,具有NP难度.本文以上海远洋公司的1700TEU全集装箱船"冰河"轮某航次的优化配载为工程背景,采用群智能算法的求解策略,给出其优化的配载方案,试图为该问题的研究和发展,提高海上集装箱运输的经济效益,做出一些有益的探索.

⛄ 部分代码

clc;clear

tic;

%% 下载数据

data=load('example.txt');

cityCoor=[data(:,2) data(:,3)];%城市坐标矩阵

Y=cityCoor(:,1);

Z=cityCoor(:,2);

P1=data(:,5);%卸载港号码

Col1=data(:,6);%所在列号码

Col=Col1';

P=P1';

Row1=data(:,7);%所在层号码

Row=Row1';

M=data(:,4);

[Gg,shift,Road]=SelfGa(@fitness,Y,Z,M,P,Col,Row,30,100,2000,0.9,0.1)

toc;

⛄ 运行结果

⛄ 参考文献

[1]孙万宇. 一种自适应并行遗传算法及其在集装箱船舶配载优化中的应用[D]. 大连海事大学.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值