【RF回归预测】基于随机森林算法的数据回归预测附matlab完整代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

RF算法原理

随机森林算法的原理可以通过以下公式概括:

  1. 对于给定的训练集,假设有N个样本,每个样本有M个特征。

  2. 从训练集中进行有放回抽样,产生B个大小相同的训练集(bootstrap样本)。

  3. 对于每个训练集,使用决策树算法构建一颗决策树模型。在构建决策树的过程中,对于每个节点,在随机选择的m个特征中选择最优的分割特征。

  4. 重复步骤2和步骤3,构建B颗决策树模型。

  5. 对于新样本,通过B颗决策树模型的投票或平均得到最终的预测结果。

其中,随机森林算法通过引入两种随机性来提高模型的泛化能力:bootstrap抽样和随机选择特征。Bootstrap抽样保证了每颗决策树的训练集具有一定的随机性,随机选择特征使得每个决策树的分割特征具有一定的差异性。这样可以减小过拟合风险,提高模型的鲁棒性和准确性。​

RF算法流程

对于基于随机森林算法的数据回归预测,你可以使用随机森林回归模型来进行预测。随机森林是一种集成学习算法,它由多个决策树组成,每个决策树都是独立训练的。

以下是使用随机森林回归模型进行数据回归预测的一般步骤:

  1. 收集数据集:首先,你需要收集包含特征和目标变量的数据集。确保数据集中没有缺失值或异常值,并且进行适当的数据预处理。

  2. 拆分数据集:将数据集拆分为训练集和测试集。通常,你可以将大部分数据用于训练,剩余部分用于模型评估。

  3. 特征选择:根据实际情况选择适当的特征。可以通过统计分析、特征相关性等方法进行特征选择。

  4. 建立模型:使用训练集来构建随机森林回归模型。在每个决策树的训练过程中,可以通过随机选择特征和样本来增加模型的多样性。

  5. 模型训练:使用训练集对随机森林模型进行训练。模型会根据特征和目标变量之间的关系来学习。

  6. 模型预测:使用测试集对模型进行预测。通过比较预测结果与实际值,评估模型的性能。

  7. 模型评估:使用适当的评估指标(如均方误差、平均绝对误差等)来评估模型的准确性和性能。

  8. 调优和改进:根据评估结果,对模型进行调优和改进。你可以调整模型的参数、特征选择方法等,以提高模型的性能。

  9. 预测新数据:当模型满足要求后,可以使用它来预测新的未知数据。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';T_train = res(temp(1: 80), 8)';M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';T_test = res(temp(81: end), 8)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型p_train = p_train'; p_test = p_test';t_train = t_train'; t_test = t_test';%%  训练模型trees = 100;                                      % 决策树数目leaf  = 5;                                        % 最小叶子数OOBPrediction = 'on';                             % 打开误差图OOBPredictorImportance = 'on';                    % 计算特征重要性Method = 'regression';                            % 分类还是回归net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance,...      'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);importance = net.OOBPermutedPredictorDeltaError;  % 重要性%%  仿真测试t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%%  绘制误差曲线figureplot(1: trees, oobError(net), 'b-', 'LineWidth', 1)legend('误差曲线')xlabel('决策树数目')ylabel('误差')xlim([1, trees])grid%%  绘制特征重要性figurebar(importance)legend('重要性')xlabel('特征')ylabel('重要性')%%  相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M;mae2 = sum(abs(T_sim2' - T_test )) ./ N;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%%  绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

⛄ 参考文献

[1] 朱品光.基于随机森林回归算法的堆石坝爆破块度预测研究[D].天津大学[2023-07-21].

[2] 叶玲,张永军.一种基于随机森林回归预测算法的路灯智能节能方法:CN201610922265.6[P].CN107979900A[2023-07-21].

[3] 袁博,刘石,姜连勋,等.基于随机森林回归算法的住房租金预测模型[J].电脑编程技巧与维护, 2020(1):3.DOI:CNKI:SUN:DNBC.0.2020-01-009.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 以下是基于CART决策树的随机森林回归算法MATLAB代码示例: ``` % 导入数据 data = load('data.csv'); X = data(:, 1:end-1); Y = data(:, end); % 设置随机森林参数 ntrees = 50; % 树的个数 mtry = size(X, 2); % 每个决策树使用的特征数 options = statset('UseParallel',true); % 并行计算 % 训练随机森林模型 rf_model = TreeBagger(ntrees, X, Y, 'Method', 'regression', 'OOBVarImp', 'on', 'MinLeafSize', 5, 'MaxNumSplits', 100, 'NumPredictorsToSample', mtry, 'Options', options); % 预测 X_new = [1, 2, 3, 4, 5]; % 新样本 Y_pred = predict(rf_model, X_new); disp(Y_pred); ``` 解释一下代码: 1. 首先导入数据,其中`data.csv`是包含特征和目标变量的CSV文件; 2. 然后设置随机森林的参数,包括树的个数、每个决策树使用的特征数等; 3. 接着使用`TreeBagger`函数训练随机森林模型,其中`Method`设置为`regression`表示回归问题,`OOBVarImp`表示计算变量重要性(即特征重要性),`MinLeafSize`和`MaxNumSplits`分别表示每个叶节点的最小样本数和每个节点的最大分裂次数,`NumPredictorsToSample`表示每个决策树随机选择的特征数; 4. 最后使用`predict`函数对新样本进行预测。 需要注意的是,随机森林的训练时间可能比较长,可以使用`UseParallel`选项开启并行计算以加快训练速度。另外,还可以使用交叉验证等方法调整模型参数以提高预测性能。 ### 回答2: 随机森林是一种集成学习算法,它通过构建多棵决策树进行预测并最终综合结果,具有较好的泛化能力和鲁棒性。下面是基于CART决策树的随机森林回归算法MATLAB代码实现: ```matlab % 加载数据 load dataset.mat % 设置参数 numTrees = 10; % 设置决策树数量 numFeatures = sqrt(size(X, 2)); % 设置每棵树的特征数量 % 创建随机森林 forest = cell(numTrees, 1); % 构建随机森林 for i = 1:numTrees % 随机选择特征 selectedFeatures = randperm(size(X, 2), numFeatures); % 随机选择样本 selectedSamples = randperm(size(X, 1)); trainIdx = selectedSamples(1:floor(size(X, 1)/2)); valIdx = selectedSamples(floor(size(X, 1)/2)+1:end); % 构建决策树 tree = fitrtree(X(trainIdx, selectedFeatures), Y(trainIdx)); % 存储决策树 forest{i} = tree; % 验证模型 YVal = predict(tree, X(valIdx, selectedFeatures)); validationError(i) = mse(YVal, Y(valIdx)); end % 预测 YTest = zeros(size(X, 1), 1); for i = 1:numTrees YTest = YTest + predict(forest{i}, X(:, selectedFeatures)); end YTest = YTest / numTrees; % 计算均方误差 testError = mse(YTest, Y); % 绘制误差曲线 figure; plot(1:numTrees, validationError); xlabel('Number of Trees'); ylabel('Validation Error'); disp(['Test Error: ', num2str(testError)]); ``` 这段代码首先加载数据集,然后设置了随机森林的参数。接下来,通过循环构建了指定数量的决策树,每棵树在构建之前随机选择了一部分特征和样本。随后对每棵决策树进行了验证,并且存储了每棵树的验证误差。最后,通过将所有决策树的预测结果进行平均,得到了最终的预测结果,并计算了测试误差。在代码末端,还绘制了随机森林模型的验证误差曲线。 ### 回答3: 对于基于CART决策树的随机森林回归算法MATLAB代码,可以按照以下步骤实现: 1. 导入数据:首先,将训练数据集和测试数据集导入MATLAB环境中。确保数据集包含特征向量和目标变量。 2. 设置参数:设置随机森林模型的参数,包括决策树数量、每棵树的最大深度等。你可以根据需求和数据的复杂性来调整这些参数。 3. 训练模型:使用训练数据集来训练随机森林模型。在MATLAB中,可以使用TreeBagger函数来实现。具体的代码如下: ```matlab model = TreeBagger(numTrees, trainFeatures, trainLabels, 'Method', 'regression', 'MaxNumSplits', maxDepth); ``` 这里,numTrees是决策树的数量,trainFeatures是训练数据的特征向量,trainLabels是目标变量。 4. 预测:使用训练好的模型对测试数据进行预测。代码如下所示: ```matlab predictedLabels = predict(model, testFeatures); ``` 这里,predictedLabels是模型对测试数据的预测结果。 5. 评估:使用指标(如均方根误差,R-squared等)来评估模型的性能。具体的评估方法可以根据需求进行选择。 完成以上步骤后,你将得到一个基于CART决策树的随机森林回归模型的MATLAB代码实现。记住,这只是一个简单的示例,你还可以根据你的需求和数据的特点进行自定义和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值