✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
气泡饼图是数据可视化中一种独特而有趣的图表类型。它将饼图和散点图的特点结合在一起,通过展示数据的比例和分布情况,使得观察者能够更直观地理解数据背后的含义。在本文中,我们将深入探讨气泡饼图的特点、应用场景以及如何创建和解读这种图表。
首先,让我们来了解一下气泡饼图的基本构成。与传统的饼图相比,气泡饼图在每个扇形区域内添加了一个气泡,气泡的大小代表了该区域所占比例的大小。这种设计使得气泡饼图能够同时展示数据的相对比例和绝对数值,提供了更全面的信息。
气泡饼图的应用场景非常广泛。首先,它常用于展示不同类别或组织之间的比例关系。例如,在市场调研中,我们可以使用气泡饼图来展示各个品牌的市场份额,气泡的大小代表了各个品牌的销售额。这样一来,我们可以直观地看到不同品牌之间的相对比例以及整个市场的规模。
此外,气泡饼图还可以用于展示多维数据之间的关系。例如,在人口统计学中,我们可以使用气泡饼图来展示不同年龄段的人口比例,气泡的大小可以表示该年龄段的人口数量。这样一来,我们可以通过观察气泡饼图,快速了解不同年龄段的人口分布情况。
在创建气泡饼图时,我们需要注意一些关键的步骤。首先,我们需要确定要展示的数据集,并将其按照比例转换为角度。然后,我们需要计算每个扇形区域的起始角度和结束角度。接下来,我们可以根据数据的绝对数值确定每个扇形区域内气泡的大小。最后,我们可以使用数据可视化工具或编程语言来创建气泡饼图,并添加必要的标签和图例,使得图表更易于理解和解读。
解读气泡饼图时,我们需要注意一些关键的要点。首先,我们应该关注气泡的大小,以了解不同区域所占比例的大小。其次,我们可以比较不同区域之间的气泡大小,以了解它们之间的相对比例。此外,我们还可以观察气泡的位置和分布情况,以获取更多关于数据的洞察。
总结一下,气泡饼图是一种独特而有趣的数据可视化工具,它能够同时展示数据的比例和分布情况。通过使用气泡饼图,我们可以更直观地理解数据背后的含义,并从中获取有价值的洞察。在今天数据驱动的世界中,气泡饼图无疑是一种强大的工具,帮助我们更好地理解和传达数据。无论是市场调研、人口统计学还是其他领域,气泡饼图都将成为我们分析和展示数据的重要利器。
📣 部分代码
BubbleChart Examples
A BubblePie chart visualizing the revenue of an imaginary store that sells pizza ingredients.
XData = 2015:2017;
YData = [50 80 65];
PieData = [12,26,12; 40,15,25; 10,10,45];
b = bubblePieChart(XData, YData, PieData);
b.LineStyle = 'none';
b.Labels = {'Basil','Tomatoes','Cheese'};
colororder([.47 .67 .19; .85 .33 .1; 1 1 .1]);
xlabel("Year")
ylabel("Revenue (thousands)")
title("Pizza Ingredient Sales")
A BubblePie chart plotting 25 pies with random data and sizes.
XData = 10 * rand(1,25);
YData = 10 * rand(1,25);
PieData = rand(25,5);
SizeData = 40 * rand(1,25) + 20;
b = bubblePieChart(XData, YData, PieData, SizeData);
colororder(cool(5));
b.LegendVisible = 'off';
classdef bubblePieChart < matlab.graphics.chartcontainer.ChartContainer & ...
matlab.graphics.chartcontainer.mixin.Legend
% bubblePieChart Creates a bubble pie chart.
% bubblePieChart(x,y,p) create a bubble pie chart with the specified
% pie locations and data. The sizes of the pies are determined
% automatically based on the pie data.
%
% bubblePieChart(x,y,p,s) create a bubble pie chart with
% the specified size for each pie in points, where one point equals
% 1/72 of an inch. s can be a scalar or a vector the same length as x
% and y. If s is a scalar, the same size is used for all pies.
%
% bubblePieChart() create a bubble pie chart using only name-value
% pairs.
%
% bubblePieChart(___,Name,Value) specifies additional options for
% the bubble pie chart using one or more name-value pair arguments.
% Specify the options after all other input arguments.
%
% bubblePieChart(parent,___) creates the bubble pie chart in the
% specified parent.
%
% b = bubblePieChart(___) returns the bubblePieChart object. Use b
% to modify properties of the plot after creating it.
% Copyright 2020-2021 The MathWorks, Inc.
properties
% x-axis locations of the pies
XData (1,:) = []
% y-axis locations of the pies
YData (1,:) = []
% Pie data, specified as a matrix, where each row corresponds to
% the data for one pie
PieData {mustBeNumeric} = []
% Pie sizes, diameters in points (1/72 inch)
SizeData (1,:) {mustBeNumeric} = 50
% Line style to use for drawing pies
LineStyle {mustBeMember(LineStyle,{'-', '--',':','-.','none'})} = '-'
% Names of the pie categories
Labels (:,1) categorical = categorical.empty(0,1)
% Title of the plot
Title (:,1) string = ""
% Subtitle of the plot
Subtitle (:,1) string = ""
% x-label of the plot
XLabel (:,1) string = ""
% y-label of the plot
YLabel (:,1) string = ""
% Mode for the x-limits.
% Note that it is not a dependent property since auto limits are
% set by the chart and not the axes
XLimitsMode (1,:) char {mustBeAutoManual} = 'auto'
% Mode for the y-limits.
YLimitsMode (1,:) char {mustBeAutoManual} = 'auto'
end
properties (Access = protected)
% Used for saving to .fig files
ChartState = []
end
properties(Access = private,Transient,NonCopyable)
% Array of parent transforms for the pies
PieChartArray (1,:) matlab.graphics.primitive.Transform
% Boolean specifying if PieData was changed since the previous call
% to update. If true, all pies need to be redrawn.
PieDataChanged logical = true
end
properties (Dependent)
% List of colors to use for pie categories
ColorOrder {validatecolor(ColorOrder, 'multiple')} = get(groot, 'factoryAxesColorOrder')
% x-limits of the plot
XLimits (1,2) double {mustBeLimits} = [0 1]
% y-limits of the plot
YLimits (1,2) double {mustBeLimits} = [0 1]
end
methods
function obj = bubblePieChart(varargin)
% Initialize list of arguments
args = varargin;
leadingArgs = cell(0);
% Check if the first input argument is a graphics object to use as parent.
if ~isempty(args) && isa(args{1},'matlab.graphics.Graphics')
% bubblePieChart(parent, ___)
leadingArgs = args(1);
args = args(2:end);
end
% Check for optional positional arguments.
if ~isempty(args) && numel(args) >= 3 && isnumeric(args{1}) ...
&& isnumeric(args{2}) && isnumeric(args{3})
if mod(numel(args),2) == 1
% bubblePieChart(x,y,p)
% bubblePieChart(x,y,p,Name,Value)
x = args{1};
y = args{2};
p = args{3};
% set size automatically. The largest pie has size 50
% and the others are scaled relative to it
totals = sum(p,2);
ratios = totals/max(totals);
s = 50*ratios;
leadingArgs = [leadingArgs {'XData', x, 'YData', y, 'PieData', p, 'SizeData', s}];
args = args(4:end);
elseif mod(numel(args),1) == 0
% bubblePieChart(x,y,p,s)
% bubblePieChart(x,y,p,s,Name,Value)
x = args{1};
y = args{2};
p = args{3};
s = args{4};
leadingArgs = [leadingArgs {'XData', x, 'YData', y, 'PieData', p, 'SizeData', s}];
args = args(5:end);
else
error('bubblePieChart:InvalidSyntax', ...
'Specify x locations, y locations, pie data, and optionally size data.');
end
end
% Combine positional arguments with name/value pairs.
args = [leadingArgs args];
% Call superclass constructor method
obj@matlab.graphics.chartcontainer.ChartContainer(args{:});
end
end
methods(Access = protected)
function setup(obj)
% Create the axes
ax = getAxes(obj);
ax.Units = 'points';
% make limit mode manual so that we can control the limits
ax.XLimMode = 'manual';
ax.YLimMode = 'manual';
% Set axes interactions
ax.Interactions = [
panInteraction;
zoomInteraction;
rulerPanInteraction];
% Set restoreview button callback
btn = axtoolbarbtn(axtoolbar(ax), 'icon', 'restoreview');
btn.ButtonPushedFcn = @(~,~) update(obj);
% Call the load method in case of loading from a fig file
loadstate(obj);
end
function update(obj)
ax = getAxes(obj);
% Verify that the data properties are consistent with one
% another.
showChart = verifyDataProperties(obj);
set(obj.PieChartArray,'Visible', showChart);
% Abort early if not visible due to invalid data.
if ~showChart
return
end
% If pie data is changed, delete and recreate all pies
if obj.PieDataChanged
delete(obj.PieChartArray);
hold(ax,'on');
for r = 1:size(obj.PieData,1)
% Create new Transform
t = hgtransform('Parent',ax);
obj.PieChartArray(r) = t;
% Create new pie with transform as parent
x = obj.PieData(r,:);
myPie(t,x);
end
hold(ax,'off')
obj.PieDataChanged = false;
end
% Set only the first pie chart to show in the legend
obj.PieChartArray(1).Annotation.LegendInformation.IconDisplayStyle = 'children';
% Update legend labels
if ~isempty(obj.Labels)
lgd = getLegend(obj);
lgd.String = obj.Labels;
end
% Set Colormap based on ColorOrder
ax.Colormap = obj.ColorOrder(mod(0:size(obj.PieData,2)-1,size(obj.ColorOrder,1))+1,:);
% Automatically set axes limits
if strcmp(obj.XLimitsMode,'auto')
obj.setAutoXLimits();
end
if strcmp(obj.YLimitsMode,'auto')
obj.setAutoYLimits();
end
% Set position, scale, and style of each pie
for i = 1:length(obj.PieChartArray)
% move and scale pies
txy = makehgtform('translate', ...
[obj.XData(i), obj.YData(i), 0]);
% Determine scale to use
% divide by 2 since SizeData corresponds to diameter, and
% default pies have radius of 1
if isscalar(obj.SizeData)
scale = obj.SizeData/2;
else
scale = obj.SizeData(i)/2;
end
% Convert scale from axis units to data units
sx = (ax.XLim(2) - ax.XLim(1))*scale/ax.Position(3);
sy = (ax.YLim(2) - ax.YLim(1))*scale/ax.Position(4);
sxy = makehgtform('scale',[sx, sy, 1]);
obj.PieChartArray(i).Matrix = txy * sxy;
patches = findall(obj.PieChartArray(i), 'Type', 'Patch');
set(patches,'LineStyle',obj.LineStyle);
end
% Set title
title(ax, obj.Title, obj.Subtitle);
% Set axis labels
xlabel(ax, obj.XLabel);
ylabel(ax, obj.YLabel);
end
function showChart = verifyDataProperties(obj)
% x and y must be the same length.
showChart = numel(obj.XData) == numel(obj.YData);
if ~showChart
warning('bubblePieChart:DataLengthMismatch',...
'XData and YData must be the same legnth');
return
end
% PieData must have the same number of rows as the length of x
showChart = size(obj.PieData,1) == numel(obj.XData);
if ~showChart
warning('bubblePieChart:DataLengthMismatch',...
'PieData must have the same number of rows as XData.');
return
end
% SizeData must be a scalar or be the same length as x
showChart = isscalar(obj.SizeData) || numel(obj.SizeData) == numel(obj.XData);
if ~showChart
warning('bubblePieChart:DataLengthMismatch',...
'SizeData must be a scalar or have the same number of rows as XData.');
return
end
end
end
methods
function data = get.ChartState(obj)
% This method gets called when a .fig file is saved
isLoadedStateAvailable = ~isempty(obj.ChartState);
if isLoadedStateAvailable
data = obj.ChartState;
else
data = struct;
ax = getAxes(obj);
% Get axis limits only if mode is manual.
if strcmp(ax.XLimMode,'manual')
data.XLim = ax.XLim;
end
if strcmp(ax.YLimMode,'manual')
data.YLim = ax.YLim;
end
end
end
function loadstate(obj)
% Call this method from setup to handle loading of .fig files
data=obj.ChartState;
ax = getAxes(obj);
% Look for states that changed
if isfield(data, 'XLim')
ax.XLim=data.XLim;
end
if isfield(data, 'YLim')
ax.YLim=data.YLim;
end
end
function set.PieData(obj,val)
obj.PieData = val;
obj.PieDataChanged = true;
end
function updateNow(obj)
update(obj);
end
function set.ColorOrder(obj, map)
ax = getAxes(obj);
ax.ColorOrder = validatecolor(map, 'multiple');
end
function map = get.ColorOrder(obj)
ax = getAxes(obj);
map = ax.ColorOrder;
end
% xlim method
function varargout = xlim(obj,varargin)
ax = getAxes(obj);
[varargout{1:nargout}] = xlim(ax,varargin{:});
end
% ylim method
function varargout = ylim(obj,varargin)
ax = getAxes(obj);
[varargout{1:nargout}] = ylim(ax,varargin{:});
end
% set and get methods for XLimits
function set.XLimits(obj,xlm)
ax = getAxes(obj);
ax.XLim = xlm;
end
function xlm = get.XLimits(obj)
ax = getAxes(obj);
xlm = ax.XLim;
end
% set and get methods for YLimits
function set.YLimits(obj,ylm)
ax = getAxes(obj);
ax.YLim = ylm;
end
function ylm = get.YLimits(obj)
ax = getAxes(obj);
ylm = ax.YLim;
end
end
methods(Access=private)
% Helper function for auotmatically setting x-limits
function setAutoXLimits(obj)
ax = getAxes(obj);
minX = min(obj.XData);
maxX = max(obj.XData);
if(minX==maxX)
minX = minX-1;
maxX = maxX+1;
end
maxRadius = min(max(obj.SizeData)/2, ax.Position(3)/3);
A = [-maxRadius+ax.Position(3) maxRadius;
maxRadius ax.Position(3)-maxRadius];
b = [minX*ax.Position(3); maxX*ax.Position(3)];
xlimits = A\b;
obj.XLimits = xlimits;
end
% Helper function for auotmatically setting y-limits
function setAutoYLimits(obj)
ax = getAxes(obj);
minY = min(obj.YData);
maxY = max(obj.YData);
if(minY==maxY)
minY = minY-1;
maxY = maxY+1;
end
maxRadius = min(max(obj.SizeData)/2, ax.Position(4)/3);
A = [-maxRadius+ax.Position(4) maxRadius;
maxRadius ax.Position(4)-maxRadius];
b = [minY*ax.Position(4); maxY*ax.Position(4)];
ylimits = A\b;
obj.YLimits = ylimits;
end
end
end
function mustBeLimits(a)
if numel(a) ~= 2 || a(2) <= a(1)
throwAsCaller(MException('densityScatterChart:InvalidLimits', 'Specify limits as two increasing values.'))
end
end
function mustBeAutoManual(mode)
mustBeMember(mode, {'auto','manual'})
end
% Helper function for creating pies baesd on MATLAB's pie function
function h = myPie(ax,x)
% Normalize input data
x = x/sum(x);
h = [];
theta0 = pi/2;
maxpts = 100;
for i=1:length(x)
n = max(1,ceil(maxpts*x(i)));
r = [0;ones(n+1,1);0];
theta = theta0 + [0;x(i)*(0:n)'/n;0]*2*pi;
[xx,yy] = pol2cart(theta,r);
theta0 = max(theta);
h = [h,...
patch('XData',xx,'YData',yy,'CData',i*ones(size(xx)), ...
'FaceColor','Flat','parent',ax)]; %#ok<AGROW>
end
end
⛳️ 运行结果
🔗 参考文献
[1] 张蕾.基于神经网络的地区配变重过载预测研究[J].陕西理工大学, 2019.
[2] 俞建荣,卜凡亮,曹建树,等.基于Matlab的流化床气泡运动的图像识别与处理[J].仪器仪表学报, 2006(z3):2.DOI:10.3321/j.issn:0254-3087.2006.z3.215.
[3] 王寻,王宏哲,张泽坤,等.基于Matlab GUI的气泡动力学仿真系统设计[J].实验室研究与探索, 2022(004):041.
🎈 部分理论引用网络文献,若有侵权联系博主删除