✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在当今信息技术高速发展的时代,车联网已经成为了现实生活中不可或缺的一部分。随着车辆之间和车辆与基础设施之间的通信需求不断增加,如何优化车联网的路由问题成为了研究的热点之一。本文将介绍混沌和非线性控制哈里鹰算法(NCHHO)在优化车联网相关路由问题中的应用。
车联网是指通过无线通信技术将车辆、道路和基础设施连接起来,形成一个智能化的交通系统。在车联网中,车辆之间可以通过通信网络进行信息交换,实现车辆之间的协同和智能交通管理。而路由问题则是指在车联网中确定车辆之间传输数据的最优路径,以确保数据的高效传输和低延迟。
传统的路由算法主要基于线性控制理论和传统优化算法,但这些算法在处理复杂的非线性系统和大规模网络时存在一定的局限性。而混沌和非线性控制哈里鹰算法(NCHHO)则是一种基于混沌和非线性控制理论的新型优化算法,具有较强的全局搜索能力和适应性。
NCHHO算法的基本思想是将混沌搜索和非线性控制相结合,通过模拟哈里鹰的觅食行为来寻找最优解。混沌搜索的特点是具有随机性和无序性,可以在搜索空间中进行全局搜索;而非线性控制则可以对搜索过程进行调节和优化,提高搜索效率和收敛速度。
在优化车联网路由问题中,NCHHO算法可以通过建立适当的目标函数来寻找最优路径。目标函数可以包括数据传输的时延、能耗、网络拥塞程度等指标,通过调整这些指标的权重可以得到不同的路由策略。NCHHO算法通过不断迭代和优化,可以在较短的时间内找到最优解,提高车联网的通信效率和性能。
除了优化路由问题,NCHHO算法还可以应用于车联网中其他相关的问题,如车辆调度、资源分配等。通过将NCHHO算法与其他智能算法相结合,可以进一步提高车联网的整体性能和效果。
总之,混沌和非线性控制哈里鹰算法(NCHHO)是一种应用于优化车联网相关路由问题的新型算法。通过结合混沌搜索和非线性控制理论,NCHHO算法可以在较短的时间内找到最优解,提高车联网的通信效率和性能。未来,我们可以进一步研究和改进NCHHO算法,以应对车联网中更加复杂和实际的问题,推动车联网技术的发展和应用。
📣 部分代码
function [Rabbit_Energy,Rabbit_Location, Div, Xpl, Xpt,CNVG]=LMHHO(N,T,lb,ub,dim,fobj)
% initialize the location and Energy of the rabbit
Rabbit_Location=zeros(1,dim);
Rabbit_Energy=inf;
%Initialize the locations of Harris' hawks
X=initialization(N,dim,ub,lb);
Div = [];
CNVG=zeros(1,T);
MemoryLimit=10;
gBestCollPos=zeros(MemoryLimit,dim);
gBestCollCost=1.0e+100*ones(MemoryLimit,1);
gBestCollProb=zeros(MemoryLimit,1);
gBestCollCount=0;
t=0; % Loop counter
while t<T
for i=1:size(X,1)
% Check boundries
FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;
% fitness of locations
fitness=fobj(X(i,:));
% Update the location of Rabbit
if fitness<Rabbit_Energy
Rabbit_Energy=fitness;
Rabbit_Location=X(i,:);
if gBestCollCount<=MemoryLimit && gBestCollCount>0
gBestCollPos(gBestCollCount,:)=X(i,:);
gBestCollCost(gBestCollCount)=fitness;
else
gBestCollCount=1;
gBestCollPos(gBestCollCount,:)=X(i,:);
gBestCollCost(gBestCollCount)=fitness;
end
end
end
F=zeros(MemoryLimit,1);
MeanCost = mean(gBestCollCost);
for j=1:MemoryLimit
F(j) = exp(-gBestCollCost(j)/MeanCost);
end
gBestCollProb(:)=F/sum(F);
if range(gBestCollCost)~=0
pr=RouletteWheelSelection(gBestCollProb);
% Choose k randomly, not equal to i
K=[1:pr-1 pr+1:MemoryLimit];
k=K(randi([1 numel(K)]));
gbestX=gBestCollPos(k,:);
else
gbestX=Rabbit_Location;
end
E1=2*(1-(t/T)); % factor to show the decreaing energy of rabbit
% Update the location of Harris' hawks
for i=1:size(X,1)
E0=2*rand()-1; %-1<E0<1
Escaping_Energy=E1*(E0); % escaping energy of rabbit
if abs(Escaping_Energy)>=1
%% Exploration:
% Harris' hawks perch randomly based on 2 strategy:
q=rand();
rand_Hawk_index = floor(N*rand()+1);
X_rand = X(rand_Hawk_index, :);
if q<0.5
% perch based on other family members
X(i,:)=X_rand-rand()*abs(X_rand-2*rand()*X(i,:));
elseif q>=0.5
% perch on a random tall tree (random site inside group's home range)
X(i,:)=(gbestX-mean(X))-rand()*((ub-lb)*rand+lb);
end
elseif abs(Escaping_Energy)<1
%% Exploitation:
% Attacking the rabbit using 4 strategies regarding the behavior of the rabbit
%% phase 1: surprise pounce (seven kills)
% surprise pounce (seven kills): multiple, short rapid dives by different hawks
r=rand(); % probablity of each event
if r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiege
X(i,:)=(gbestX)-Escaping_Energy*abs(gbestX-X(i,:));
end
if r>=0.5 && abs(Escaping_Energy)>=0.5 % Soft besiege
Jump_strength=2*(1-rand()); % random jump strength of the rabbit
X(i,:)=(gbestX-X(i,:))-Escaping_Energy*abs(Jump_strength*gbestX-X(i,:));
end
%% phase 2: performing team rapid dives (leapfrog movements)
if r<0.5 && abs(Escaping_Energy)>=0.5, % Soft besiege % rabbit try to escape by many zigzag deceptive motions
Jump_strength=2*(1-rand());
X1=gbestX-Escaping_Energy*abs(Jump_strength*gbestX-X(i,:));
if fobj(X1)<fobj(X(i,:)) % improved move?
X(i,:)=X1;
else % hawks perform levy-based short rapid dives around the rabbit
X2=gbestX-Escaping_Energy*abs(Jump_strength*gbestX-X(i,:))+rand(1,dim).*Levy(dim);
if (fobj(X2)<fobj(X(i,:))), % improved move?
X(i,:)=X2;
end
end
end
if r<0.5 && abs(Escaping_Energy)<0.5, % Hard besiege % rabbit try to escape by many zigzag deceptive motions
% hawks try to decrease their average location with the rabbit
Jump_strength=2*(1-rand());
X1=gbestX-Escaping_Energy*abs(Jump_strength*gbestX-mean(X));
if fobj(X1)<fobj(X(i,:)) % improved move?
X(i,:)=X1;
else % Perform levy-based short rapid dives around the rabbit
X2=gbestX-Escaping_Energy*abs(Jump_strength*gbestX-mean(X))+rand(1,dim).*Levy(dim);
if (fobj(X2)<fobj(X(i,:))), % improved move?
X(i,:)=X2;
end
end
end
%%
end
end
t=t+1;
CNVG(t)=Rabbit_Energy;
% Print the progress every 100 iterations
% if mod(t,100)==0
% display(['Iteration: ', num2str(t), ', fitness: ', num2str(Rabbit_Energy)]);
% end
% Normalize particle position values
pTemp=X;
pTemp2=X;
for j=1:dim
for i=1:N
pTemp2(i,j)=pTemp(i,j)+abs(min(pTemp(:,j)));
end
if max(pTemp2(:,j))>0
pTemp2(:,j)=pTemp2(:,j)/max(pTemp2(:,j));
else
pTemp2(:,j)=0;
end
end
for i=1:N
% Population diversity of swarm individuals
med=0;
for j=1:dim
med= med + abs(median(pTemp2(:,j))-pTemp2(i,j));
end
end
% Population diversity as a whole
temp=[];
for j=1:dim
temp(j)=mean(abs(pTemp2(:,j)-mean(pTemp2(:,j))));
end
Div(t)= sum(temp)/N;
end
Xpl = sum((Div/max(Div))*100);
Xpt =sum((abs((Div-max(Div)))/max(Div))*100);
end
% ___________________________________
function o=Levy(d)
beta=1.5;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);
o=step;
end
⛳️ 运行结果
🔗 参考文献
[1] Dehkordi A A , Sadiq A S , Mirjalili S ,et al.Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application[J].Applied Soft Computing, 2021, 109(2):107574.DOI:10.1016/j.asoc.2021.107574.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合