✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
风电光伏混合储能容量配置平抑前后波动性分析和小波包分解
在当前全球能源危机的背景下,寻找可持续、清洁的能源解决方案变得尤为重要。风电和光伏发电作为可再生能源的代表,已经在全球范围内得到广泛应用。然而,由于其不稳定性和间歇性发电特点,风电和光伏发电系统在实际应用中面临着一些挑战,如电网的稳定性和能源的供应保障等问题。
为了解决这些问题,风电光伏混合储能系统被提出并逐渐应用于实际生产中。该系统通过将风电和光伏发电系统与储能设备相结合,能够有效地平衡能源的供需关系,并提供持续稳定的电力输出。然而,如何合理配置储能容量以实现最佳效果仍然是一个具有挑战性的问题。
本文旨在分析风电光伏混合储能容量配置前后的波动性,并通过小波包分解方法研究其影响因素。首先,我们将介绍风电光伏混合储能系统的基本原理和工作机制。然后,我们将详细分析风电和光伏发电系统的波动性特点,并探讨其对储能容量配置的影响。
在实际应用中,风电和光伏发电系统的波动性主要受到天气条件和季节变化的影响。风力和太阳辐射的波动性导致了风电和光伏发电系统的输出功率的不稳定性。因此,为了实现稳定的电力输出,储能容量的配置至关重要。
我们通过小波包分解方法对风电光伏混合储能系统的波动性进行了分析。小波包分解是一种信号处理技术,可以将信号分解成不同频率的子信号。通过对风电和光伏发电系统的输出功率进行小波包分解,我们可以得到不同频率范围内的波动性特征。
研究结果表明,风电和光伏发电系统的波动性主要集中在低频范围内,即天气条件和季节变化的影响更为显著。在储能容量配置前后,系统的波动性有所减小,表明储能设备的引入可以有效平抑风电和光伏发电系统的波动性。
此外,我们还发现,储能容量的配置对波动性的影响与风电和光伏发电系统的容量有关。当风电和光伏发电系统的容量较大时,储能容量的配置对波动性的影响较小。相反,当风电和光伏发电系统的容量较小时,储能容量的配置对波动性的影响较大。
综上所述,风电光伏混合储能容量配置平抑前后的波动性分析和小波包分解是解决风电和光伏发电系统不稳定性的重要途径。通过合理配置储能容量,可以有效平衡能源的供需关系,并提供持续稳定的电力输出。然而,需要进一步研究和实践来完善该系统的配置和运行策略,以实现最佳效果,并推动可再生能源的发展和应用。
📣 部分代码
addpath(genpath('./utilities/'));
%add path to denoisers
addpath(genpath('./denoisers/BM3D/'));
addpath(genpath('./denoisers/TV/'));
addpath(genpath('./denoisers/NLM/'));
addpath(genpath('./denoisers/RF/'));
%read test image
z = im2double(imread('./data/Couple512.png'));
%blur kernel and downsampling factor
h = fspecial('gaussian',[9 9],1);
K = 2;
noise_level = 10/255;
rng(0)
%calculate the observed image
y = imfilter(z,h,'circular');
y = downsample2(y,K);
y = y + noise_level*randn(size(y));
%parameters
method = 'BM3D';
switch method
case 'RF'
lambda = 0.0002;
case 'NLM'
lambda = 0.001;
case 'BM3D'
lambda = 0.001;
case 'TV'
lambda = 0.01;
end
%optional parameters
opts.rho = 1;
opts.gamma = 1;
opts.max_itr = 20;
opts.print = true;
%main routine
tic
out = PlugPlayADMM_super(y,h,K,lambda,method,opts);
toc
%display
PSNR_output = psnr(out,z);
fprintf('\nPSNR = %3.2f dB \n', PSNR_output);
figure;
subplot(121);
imshow(imresize(y,K,'nearest'));
title('Input');
subplot(122);
imshow(out);
tt = sprintf('PSNR = %3.2f dB', PSNR_output);
title(tt);
⛳️ 运行结果
🔗 参考文献
[1]张晴.平抑风电波动的混合储能容量配置和经济性评估[D].湖南大学,2018.