✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在当今大数据时代,数据预测和分析一直是各行各业关注的焦点。随着人工智能和机器学习技术的不断发展,各种模型和算法也在不断涌现。本文将介绍一种基于能量谷算法优化多头注意力机制卷积神经网络结合门控循环单元EVO-MultiAttention-CNN-GRU实现数据多维输入单输出预测的方法。
首先,让我们来了解一下这个方法中涉及到的一些关键概念。多头注意力机制是一种用于处理序列数据的机制,它可以将输入的序列数据进行加权平均,从而更好地捕捉序列中的重要信息。卷积神经网络是一种用于处理图像数据的神经网络结构,它通过卷积操作可以提取出图像中的特征。门控循环单元是一种特殊的循环神经网络结构,它可以更好地处理序列数据中的长期依赖关系。
EVO-MultiAttention-CNN-GRU方法将这三种结构进行了整合和优化,以实现对多维输入数据的单输出预测。其中,能量谷算法被用来优化多头注意力机制,以提高其对输入数据的关注度和权重分配能力。这种方法的优势在于能够同时处理多维数据,捕捉数据之间的复杂关联,并且能够实现对未来趋势的预测。
在实际应用中,EVO-MultiAttention-CNN-GRU方法可以被广泛应用于各种领域,如金融、医疗、气象等。例如,在金融领域,可以利用这种方法对股票价格走势进行预测;在医疗领域,可以利用这种方法对疾病的发展趋势进行预测;在气象领域,可以利用这种方法对天气变化进行预测。通过对多维数据的建模和预测,可以帮助人们更好地理解数据背后的规律,并且为未来的决策提供参考。
总之,基于能量谷算法优化多头注意力机制卷积神经网络结合门控循环单元EVO-MultiAttention-CNN-GRU方法为多维输入数据的单输出预测提供了一种新的思路和解决方案。随着人工智能和机器学习技术的不断发展,相信这种方法将会在更多领域得到应用,并且为数据分析和预测带来新的突破。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 阮钦,杨为.基于融合多头注意力机制和门控循环单元的驾驶员意图识别方法[J].中国科技论文在线精品论文, 2023.
[2] 王博文,王景升,王统一,等.基于卷积神经网络与门控循环单元的交通流预测模型[J].重庆大学学报, 2023, 46(8):132-140.
[3] 刘涛涛,田春瑾,普运伟,等.基于一维卷积循环神经网络的雷达辐射源信号识别[J].四川大学学报:自然科学版, 2023, 60(4):83-89.