基于能量谷算法优化多头注意力机制卷积神经网络结合门控循环单元实现数据多维输入单输出预测附matlab代码 EVO-MultiAttention-CNN-GRU

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在当今大数据时代,数据预测和分析一直是各行各业关注的焦点。随着人工智能和机器学习技术的不断发展,各种模型和算法也在不断涌现。本文将介绍一种基于能量谷算法优化多头注意力机制卷积神经网络结合门控循环单元EVO-MultiAttention-CNN-GRU实现数据多维输入单输出预测的方法。

首先,让我们来了解一下这个方法中涉及到的一些关键概念。多头注意力机制是一种用于处理序列数据的机制,它可以将输入的序列数据进行加权平均,从而更好地捕捉序列中的重要信息。卷积神经网络是一种用于处理图像数据的神经网络结构,它通过卷积操作可以提取出图像中的特征。门控循环单元是一种特殊的循环神经网络结构,它可以更好地处理序列数据中的长期依赖关系。

EVO-MultiAttention-CNN-GRU方法将这三种结构进行了整合和优化,以实现对多维输入数据的单输出预测。其中,能量谷算法被用来优化多头注意力机制,以提高其对输入数据的关注度和权重分配能力。这种方法的优势在于能够同时处理多维数据,捕捉数据之间的复杂关联,并且能够实现对未来趋势的预测。

在实际应用中,EVO-MultiAttention-CNN-GRU方法可以被广泛应用于各种领域,如金融、医疗、气象等。例如,在金融领域,可以利用这种方法对股票价格走势进行预测;在医疗领域,可以利用这种方法对疾病的发展趋势进行预测;在气象领域,可以利用这种方法对天气变化进行预测。通过对多维数据的建模和预测,可以帮助人们更好地理解数据背后的规律,并且为未来的决策提供参考。

总之,基于能量谷算法优化多头注意力机制卷积神经网络结合门控循环单元EVO-MultiAttention-CNN-GRU方法为多维输入数据的单输出预测提供了一种新的思路和解决方案。随着人工智能和机器学习技术的不断发展,相信这种方法将会在更多领域得到应用,并且为数据分析和预测带来新的突破。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 阮钦,杨为.基于融合多头注意力机制和门控循环单元的驾驶员意图识别方法[J].中国科技论文在线精品论文, 2023.

[2] 王博文,王景升,王统一,等.基于卷积神经网络与门控循环单元的交通流预测模型[J].重庆大学学报, 2023, 46(8):132-140.

[3] 刘涛涛,田春瑾,普运伟,等.基于一维卷积循环神经网络的雷达辐射源信号识别[J].四川大学学报:自然科学版, 2023, 60(4):83-89.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值