✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在本文中,我们提出了一种基于龙格库塔算法的PID控制方法,用于控制青霉素非结构动力学模型。该方法利用龙格库塔算法对模型进行求解,并结合PID控制算法对模型进行控制。仿真结果表明,该方法能够有效地控制青霉素浓度,并具有良好的鲁棒性和抗干扰能力。
1. 引言
青霉素是一种重要的抗生素,广泛用于治疗各种细菌感染。青霉素的药代动力学模型可以描述青霉素在人体内的吸收、分布、代谢和排泄过程。非结构动力学模型是一种简化的药代动力学模型,它假设药物在体内均匀分布,并且不考虑药物与组织之间的相互作用。
PID控制是一种经典的控制算法,它具有结构简单、易于实现、鲁棒性好等优点。PID控制算法通过调节控制器的比例、积分和微分参数来实现对系统的控制。
2. 青霉素非结构动力学模型
青霉素非结构动力学模型可以表示为以下微分方程:
dC/dt = -k*C
其中,C表示青霉素浓度,k表示消除速率常数。
3. 龙格库塔算法
龙格库塔算法是一种显式数值求解微分方程的方法。对于一阶微分方程,龙格库塔算法的公式如下:
C(t+h) = C(t) + h*f(t, C(t))
其中,h表示步长,f(t, C(t))表示微分方程的右端函数。
4. PID控制算法
PID控制算法的公式如下:
u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*de(t)/dt
其中,u(t)表示控制器的输出,e(t)表示误差,Kp、Ki和Kd分别表示比例、积分和微分参数。
5. 基于龙格库塔算法的PID控制方法
该方法的具体步骤如下:
-
初始化青霉素浓度C(0)和控制器的参数Kp、Ki、Kd。
-
使用龙格库塔算法求解青霉素非结构动力学模型,得到青霉素浓度C(t)。
-
计算误差e(t) = C_d(t) - C(t),其中C_d(t)表示期望的青霉素浓度。
-
根据PID控制算法计算控制器的输出u(t)。
-
将u(t)作为输入作用于青霉素非结构动力学模型,并重复步骤2-4,直到达到控制目标。
7. 结论
本文提出了一种基于龙格库塔算法的PID控制方法,用于控制青霉素非结构动力学模型。该方法利用龙格库塔算法对模型进行求解,并结合PID控制算法对模型进行控制。仿真结果表明,该方法能够有效地控制青霉素浓度,并具有良好的鲁棒性和抗干扰能力。
📣 部分代码
%Runge-Kutta 3.30
clc
clear all
clm=1.160; %??????
k=0.010; %??????
ki=0.100; %????????
kla=200; %?????????
kop=0.0005; %?????
kox=0.02; %?????
kp=0.0002; %??????????
km=0.15; %Monod??
mx=0.0140; %??????????
sf=600; %?????
um=0.092; %??????
up=0.005; %??????
Y_xs=0.450; %??????????????
Y_ps=0.900; %??????????????
Y_xo=0.040; %??????????????
Y_po=0.200; %??????????????
mo=0.467; %??????????
cx(1)=0.100; %??????
cp(1)=0; %???????
cs(1)=15; %??????
cl(1)=0; %???????
upp(1)=0;
ux(1)=0;
cv(1)=100; %????
f=0.043; %??????
cs_in(1)=0;
h=0.01;
x=0:0.01:599.99;
ei(20000)=0;
laste(20000)=0;
%lastu(20000)=0;
ts=0.01; %sampling time
KP=15;
KI=0.1;%0.000001;
KD=0.04;%3;
u=f;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类