【PID控制】基于龙格库塔算法实现青霉素非结构动力学模型PID控制附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

在本文中,我们提出了一种基于龙格库塔算法的PID控制方法,用于控制青霉素非结构动力学模型。该方法利用龙格库塔算法对模型进行求解,并结合PID控制算法对模型进行控制。仿真结果表明,该方法能够有效地控制青霉素浓度,并具有良好的鲁棒性和抗干扰能力。

1. 引言

青霉素是一种重要的抗生素,广泛用于治疗各种细菌感染。青霉素的药代动力学模型可以描述青霉素在人体内的吸收、分布、代谢和排泄过程。非结构动力学模型是一种简化的药代动力学模型,它假设药物在体内均匀分布,并且不考虑药物与组织之间的相互作用。

PID控制是一种经典的控制算法,它具有结构简单、易于实现、鲁棒性好等优点。PID控制算法通过调节控制器的比例、积分和微分参数来实现对系统的控制。

2. 青霉素非结构动力学模型

青霉素非结构动力学模型可以表示为以下微分方程:

dC/dt = -k*C

其中,C表示青霉素浓度,k表示消除速率常数。

3. 龙格库塔算法

龙格库塔算法是一种显式数值求解微分方程的方法。对于一阶微分方程,龙格库塔算法的公式如下:

C(t+h) = C(t) + h*f(t, C(t))

其中,h表示步长,f(t, C(t))表示微分方程的右端函数。

4. PID控制算法

PID控制算法的公式如下:

u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*de(t)/dt

其中,u(t)表示控制器的输出,e(t)表示误差,Kp、Ki和Kd分别表示比例、积分和微分参数。

5. 基于龙格库塔算法的PID控制方法

该方法的具体步骤如下:

  1. 初始化青霉素浓度C(0)和控制器的参数Kp、Ki、Kd。

  2. 使用龙格库塔算法求解青霉素非结构动力学模型,得到青霉素浓度C(t)。

  3. 计算误差e(t) = C_d(t) - C(t),其中C_d(t)表示期望的青霉素浓度。

  4. 根据PID控制算法计算控制器的输出u(t)。

  5. 将u(t)作为输入作用于青霉素非结构动力学模型,并重复步骤2-4,直到达到控制目标。

7. 结论

本文提出了一种基于龙格库塔算法的PID控制方法,用于控制青霉素非结构动力学模型。该方法利用龙格库塔算法对模型进行求解,并结合PID控制算法对模型进行控制。仿真结果表明,该方法能够有效地控制青霉素浓度,并具有良好的鲁棒性和抗干扰能力。

📣 部分代码

%Runge-Kutta   3.30clcclear allclm=1.160;       %??????k=0.010;         %??????ki=0.100;        %????????kla=200;         %?????????kop=0.0005;      %?????kox=0.02;        %?????kp=0.0002;       %??????????km=0.15;         %Monod??mx=0.0140;       %??????????sf=600;          %?????um=0.092;        %??????up=0.005;        %??????Y_xs=0.450;      %??????????????Y_ps=0.900;      %??????????????Y_xo=0.040;      %??????????????Y_po=0.200;      %??????????????mo=0.467;        %??????????cx(1)=0.100;      %??????cp(1)=0;          %???????cs(1)=15;         %??????cl(1)=0;          %???????upp(1)=0;ux(1)=0;cv(1)=100;           %????f=0.043;           %??????cs_in(1)=0;h=0.01;x=0:0.01:599.99;ei(20000)=0;laste(20000)=0;%lastu(20000)=0;ts=0.01;  %sampling timeKP=15;KI=0.1;%0.000001;KD=0.04;%3;u=f;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值