✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着无人机技术的不断发展,警用无人机在城市巡逻中的应用日益广泛。然而,复杂城市地形对无人机路径规划提出了更高的要求。本文提出了一种基于改进水母、粒子群和遗传算法相结合的无人机三维路径规划算法,以实现复杂城市地形下警用无人机的路径巡逻。该算法充分考虑了城市建筑物、道路等障碍物的影响,并优化了无人机的飞行效率和安全性。
引言
警用无人机路径规划是无人机领域的一个重要研究方向。其目的是为无人机生成一条安全、高效的飞行路径,以完成特定的任务,如巡逻、侦察等。在复杂城市地形下,无人机路径规划面临着诸多挑战,包括:
-
建筑物、道路等障碍物众多,容易造成碰撞。
-
地形起伏较大,影响无人机的飞行高度和速度。
-
巡逻区域面积大,需要考虑无人机的续航能力。
改进水母、粒子群、遗传算法相结合的路径规划算法
为了解决复杂城市地形下无人机路径规划的挑战,本文提出了一种基于改进水母、粒子群和遗传算法相结合的路径规划算法。该算法主要包括以下步骤:
1. 初始化
-
随机生成一组粒子,每个粒子表示一条候选路径。
-
设置粒子的位置、速度和适应度函数。
2. 改进水母算法
-
将水母算法引入粒子群算法中,以增强算法的全局搜索能力。
-
水母算法通过模拟水母的运动行为,实现粒子群的快速收敛。
3. 粒子群算法
-
粒子群算法通过粒子之间的信息交换,实现算法的局部搜索能力。
-
每个粒子更新自己的位置和速度,并根据适应度函数计算其适应度。
4. 遗传算法
-
遗传算法引入交叉和变异操作,以提高算法的种群多样性。
-
适应度高的粒子被选中进行交叉和变异,产生新的候选路径。
5. 适应度函数
-
适应度函数综合考虑了路径长度、飞行时间、障碍物避让等因素。
-
适应度高的路径表示更优的飞行方案。
6. 迭代更新
-
重复执行步骤2-5,直到满足终止条件(如达到最大迭代次数或适应度不再改善)。
7. 输出结果
-
输出最优路径,并将其转换为无人机的控制指令。
实验结果
为了验证算法的有效性,本文在仿真环境中进行了实验。实验结果表明:
-
改进水母、粒子群、遗传算法相结合的路径规划算法能够有效生成安全、高效的无人机路径。
-
该算法在复杂城市地形下具有良好的鲁棒性和收敛性。
-
与传统算法相比,该算法能够显著减少无人机的飞行时间和障碍物避让次数。
结论
本文提出了一种基于改进水母、粒子群和遗传算法相结合的无人机三维路径规划算法,以实现复杂城市地形下警用无人机的路径巡逻。该算法充分考虑了城市障碍物的影响,并优化了无人机的飞行效率和安全性。实验结果表明,该算法具有良好的性能,能够有效解决复杂城市地形下无人机路径规划的挑战。
📣 部分代码
function [bestY,bestX,recording,bestR]=ACO(x,y,option,data)
%% 初始化
recording.bestFit=zeros(option.maxIteration+1,1);
recording.meanFit=zeros(option.maxIteration+1,1);
%% 更新记录
[y_g,position]=min(y);
x_g=x(position(1),:);
y_p=y;
x_p=x;
recording.bestFit=y_g;
recording.meanFit=mean(y_p);
Ph=x_g;
P_decay=0.1; %信息素衰减
[~,bestR]=aimFcn_1(x_g,option,data);
y_g=inf;
%% 开始更新
for iter=1:option.maxIteration
disp(['ACO,iter:',num2str(iter),',minFit:',num2str(y_g)])
if iter==1
newX=x*0;
newY=y;
end
%% 生成新的蚂蚁
for i=1:option.numAgent
[newY(i),newResult(i),newX(i,:)]=aimFcn_2(Ph,option,data);
if newY(i)<y_g
bestR=newResult(i);
y_g=newY(i);
end
end
%% 信息素更新
Ph=Ph*(1-P_decay);
for i=1:option.numAgent
for j=1:length(newResult(i).path(:,1))
no1=newResult(i).path(j,1);
no2=newResult(i).path(j,2);
no3=newResult(i).path(j,3);
index=sub2ind(data.mapSize0,no1,no2,no3);
Ph(index)=Ph(index)-1/newY(i);
end
end
%% 更新记录
recording.bestFit(iter)=y_g;
recording.meanFit(iter)=mean(y_p);
end
bestY=y_g;
bestX=x_g;
end
⛳️ 运行结果
🔗 参考文献
[1] 唐文倩,徐海芹,刘洋.基于改进PSO混合算法的无人机三维路径规划研究[J].青岛大学学报:自然科学版, 2023, 36(3):57-63.
[2] 徐建新,孙纬,马超.基于改进粒子群算法的无人机三维路径规划[J].电光与控制, 2023, 30(6):15-21.
[3] 蔺文轩,谢文俊,张鹏,等.基于分组优化改进粒子群算法的无人机三维路径规划[J].火力与指挥控制, 2023, 48(1):20-25.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类