【无人机三维路径规划】基于改进水母、粒子群、遗传算法实现复杂城市地形下警用无人机路径巡逻附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着无人机技术的不断发展,警用无人机在城市巡逻中的应用日益广泛。然而,复杂城市地形对无人机路径规划提出了更高的要求。本文提出了一种基于改进水母、粒子群和遗传算法相结合的无人机三维路径规划算法,以实现复杂城市地形下警用无人机的路径巡逻。该算法充分考虑了城市建筑物、道路等障碍物的影响,并优化了无人机的飞行效率和安全性。

引言

警用无人机路径规划是无人机领域的一个重要研究方向。其目的是为无人机生成一条安全、高效的飞行路径,以完成特定的任务,如巡逻、侦察等。在复杂城市地形下,无人机路径规划面临着诸多挑战,包括:

  • 建筑物、道路等障碍物众多,容易造成碰撞。

  • 地形起伏较大,影响无人机的飞行高度和速度。

  • 巡逻区域面积大,需要考虑无人机的续航能力。

改进水母、粒子群、遗传算法相结合的路径规划算法

为了解决复杂城市地形下无人机路径规划的挑战,本文提出了一种基于改进水母、粒子群和遗传算法相结合的路径规划算法。该算法主要包括以下步骤:

1. 初始化

  • 随机生成一组粒子,每个粒子表示一条候选路径。

  • 设置粒子的位置、速度和适应度函数。

2. 改进水母算法

  • 将水母算法引入粒子群算法中,以增强算法的全局搜索能力。

  • 水母算法通过模拟水母的运动行为,实现粒子群的快速收敛。

3. 粒子群算法

  • 粒子群算法通过粒子之间的信息交换,实现算法的局部搜索能力。

  • 每个粒子更新自己的位置和速度,并根据适应度函数计算其适应度。

4. 遗传算法

  • 遗传算法引入交叉和变异操作,以提高算法的种群多样性。

  • 适应度高的粒子被选中进行交叉和变异,产生新的候选路径。

5. 适应度函数

  • 适应度函数综合考虑了路径长度、飞行时间、障碍物避让等因素。

  • 适应度高的路径表示更优的飞行方案。

6. 迭代更新

  • 重复执行步骤2-5,直到满足终止条件(如达到最大迭代次数或适应度不再改善)。

7. 输出结果

  • 输出最优路径,并将其转换为无人机的控制指令。

实验结果

为了验证算法的有效性,本文在仿真环境中进行了实验。实验结果表明:

  • 改进水母、粒子群、遗传算法相结合的路径规划算法能够有效生成安全、高效的无人机路径。

  • 该算法在复杂城市地形下具有良好的鲁棒性和收敛性。

  • 与传统算法相比,该算法能够显著减少无人机的飞行时间和障碍物避让次数。

结论

本文提出了一种基于改进水母、粒子群和遗传算法相结合的无人机三维路径规划算法,以实现复杂城市地形下警用无人机的路径巡逻。该算法充分考虑了城市障碍物的影响,并优化了无人机的飞行效率和安全性。实验结果表明,该算法具有良好的性能,能够有效解决复杂城市地形下无人机路径规划的挑战。

📣 部分代码

function [bestY,bestX,recording,bestR]=ACO(x,y,option,data)    %% 初始化    recording.bestFit=zeros(option.maxIteration+1,1);    recording.meanFit=zeros(option.maxIteration+1,1);    %% 更新记录    [y_g,position]=min(y);    x_g=x(position(1),:);    y_p=y;    x_p=x;    recording.bestFit=y_g;    recording.meanFit=mean(y_p);    Ph=x_g;    P_decay=0.1; %信息素衰减    [~,bestR]=aimFcn_1(x_g,option,data);    y_g=inf;    %% 开始更新    for iter=1:option.maxIteration        disp(['ACO,iter:',num2str(iter),',minFit:',num2str(y_g)])        if iter==1            newX=x*0;            newY=y;        end                %% 生成新的蚂蚁        for i=1:option.numAgent            [newY(i),newResult(i),newX(i,:)]=aimFcn_2(Ph,option,data);            if newY(i)<y_g                bestR=newResult(i);                y_g=newY(i);            end        end        %% 信息素更新        Ph=Ph*(1-P_decay);        for i=1:option.numAgent            for j=1:length(newResult(i).path(:,1))                no1=newResult(i).path(j,1);                no2=newResult(i).path(j,2);                no3=newResult(i).path(j,3);                index=sub2ind(data.mapSize0,no1,no2,no3);                Ph(index)=Ph(index)-1/newY(i);            end        end        %% 更新记录        recording.bestFit(iter)=y_g;        recording.meanFit(iter)=mean(y_p);    end    bestY=y_g;    bestX=x_g;end

⛳️ 运行结果

🔗 参考文献

[1] 唐文倩,徐海芹,刘洋.基于改进PSO混合算法的无人机三维路径规划研究[J].青岛大学学报:自然科学版, 2023, 36(3):57-63.

[2] 徐建新,孙纬,马超.基于改进粒子群算法的无人机三维路径规划[J].电光与控制, 2023, 30(6):15-21.

[3] 蔺文轩,谢文俊,张鹏,等.基于分组优化改进粒子群算法的无人机三维路径规划[J].火力与指挥控制, 2023, 48(1):20-25.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值