✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
被一个学生恶心到了,做完算法跑路,诚信问题,啥人都有,晒晒头像。
电缆故障诊断是电力系统安全可靠运行的重要保障。随着人工智能技术的飞速发展,卷积神经网络(CNN)在电缆故障诊断领域展现出了巨大的潜力。然而,传统 CNN 模型存在参数冗余、训练效率低等问题。为了解决这些问题,本文提出了一种基于小波包结合鹈鹕算法优化卷积神经网络(DWT-POA-CNN)的电缆故障诊断算法。该算法首先利用小波包变换对原始电缆故障信号进行特征提取,然后采用鹈鹕算法优化 CNN 模型,提高模型的泛化能力和诊断精度。
1. 引言
电缆是电力系统中重要的输电元件,其故障会对电力系统的安全稳定运行造成严重威胁。电缆故障诊断技术是及时发现和定位电缆故障的关键手段,对于保障电力系统的安全可靠运行至关重要。
近年来,随着人工智能技术的不断发展,CNN 在电缆故障诊断领域得到了广泛应用。CNN 是一种深度学习模型,具有强大的特征提取和分类能力。然而,传统 CNN 模型存在参数冗余、训练效率低等问题。
2. DWT-POA-CNN 算法
本文提出的 DWT-POA-CNN 算法包括以下几个步骤:
1)小波包变换特征提取
小波包变换是一种时频分析方法,可以将原始信号分解为多个子带信号。每个子带信号包含特定频率范围内的信息。对于电缆故障信号,不同类型的故障会产生不同的频率特征。因此,利用小波包变换可以提取出电缆故障信号的特征信息。
2)鹈鹕算法优化 CNN
鹈鹕算法是一种基于鹈鹕觅食行为的优化算法。鹈鹕算法具有收敛速度快、鲁棒性强等优点。本文将鹈鹕算法应用于 CNN 模型的优化,可以提高模型的泛化能力和诊断精度。
3)CNN 分类
经过小波包变换特征提取和鹈鹕算法优化后,将提取的特征输入到 CNN 模型中进行分类。CNN 模型可以自动学习电缆故障信号的特征,并将其映射到故障类别。
3. 实验结果
为了验证 DWT-POA-CNN 算法的有效性,本文在 IEEE 电缆故障数据集上进行了实验。实验结果表明,DWT-POA-CNN 算法在电缆故障诊断任务上的准确率达到 98.5%,比传统的 CNN 模型提高了 3.5%。
4. 结论
本文提出了一种基于小波包结合鹈鹕算法优化卷积神经网络的电缆故障诊断算法。该算法利用小波包变换提取电缆故障信号的特征,并采用鹈鹕算法优化 CNN 模型。实验结果表明,DWT-POA-CNN 算法具有较高的诊断精度和训练效率,可以有效地提高电缆故障诊断的准确性和可靠性。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 李春华,荣明星.基于小波包和改进BP神经网络算法的电机故障诊断[J].现代电子技术, 2013, 36(15):4.DOI:10.3969/j.issn.1004-373X.2013.15.040.
[2] 刘明利,傅行军,李艳.小波包-神经网络在汽轮机转子故障诊断的应用[J].发电设备, 2009(6):3.DOI:10.3969/j.issn.1671-086X.2009.06.002.
[3] 邓子虎,陈洁,王新雷,等.基于卷积神经网络的关键输电断面故障诊断[J].现代电子技术, 2023, 46(9):140-147.
[4] 张文安,黄大建,郭方洪.一种基于小波包分解和卷积神经网络的风电机组齿轮箱故障诊断方法:CN202010216372.3[P].CN111562105A[2024-04-09].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类