【车牌识别】基于模板匹配算法的停车场出入库车牌计费识别附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着汽车保有量的不断增长,停车场管理变得越来越重要。为了提高停车场的管理效率和安全性,车牌识别技术应运而生。基于模板匹配算法的车牌识别系统能够快速、准确地识别车辆车牌,并进行车辆出入库管理和计费,为停车场管理提供了一种高效便捷的解决方案。

一、模板匹配算法简介

模板匹配算法是一种图像处理技术,它通过将待识别图像与已知模板图像进行比较,找到最匹配的区域,从而识别出目标物体。在车牌识别系统中,模板图像即为车牌号码的字符模板,待识别图像则是车辆车牌的图像。

模板匹配算法的核心思想是计算待识别图像与模板图像之间的相似度。常用的相似度度量方法包括:

  • 平方差和 (SSD):计算待识别图像与模板图像之间像素值的平方差之和。

  • 归一化互相关 (NCC):计算待识别图像与模板图像之间的归一化互相关系数,该系数反映了两个图像之间的相似程度。

  • 零均值归一化互相关 (ZNCC):对图像进行零均值化和归一化处理,然后计算归一化互相关系数。

二、基于模板匹配算法的车牌识别系统流程

基于模板匹配算法的车牌识别系统一般包括以下几个步骤:

  1. 图像采集: 利用摄像头采集车辆图像,并进行预处理,例如去噪、亮度调整等。

  2. 车牌定位: 采用边缘检测、颜色识别等方法,从图像中定位出车牌区域。

  3. 字符分割: 将车牌图像分割成单个字符,并对每个字符进行预处理,例如倾斜校正、大小归一化等。

  4. 字符识别: 利用模板匹配算法,将每个字符与已知字符模板进行比较,找到最匹配的字符,从而识别出车牌号码。

  5. 数据处理: 将识别出的车牌号码与数据库进行比对,完成车辆出入库管理和计费等功能。

三、模板匹配算法的优缺点

优点:

  • 实现简单: 模板匹配算法实现简单,易于理解和应用。

  • 计算速度快: 模板匹配算法计算速度快,能够满足实时识别需求。

  • 识别率较高: 在车牌识别领域,模板匹配算法能够达到较高的识别率。

缺点:

  • 对光照和角度敏感: 模板匹配算法对光照和角度变化比较敏感,识别效果容易受影响。

  • 模板库需要维护: 模板库需要不断更新,才能识别新的车牌号码。

  • 识别字符范围有限: 模板匹配算法只能识别预先设定的字符,无法识别非标准字符。

四、应用场景

基于模板匹配算法的车牌识别系统应用广泛,主要应用于以下场景:

  • 停车场管理: 识别车辆车牌,进行车辆出入库管理和计费。

  • 交通监控: 识别违章车辆,进行交通执法管理。

  • 道路收费: 识别过路车辆,进行收费管理。

  • 车辆识别: 识别车辆车牌,进行车辆追踪和管理。

五、总结

基于模板匹配算法的车牌识别系统是一种简单高效的车牌识别解决方案,在实际应用中得到了广泛应用。然而,模板匹配算法也存在一些局限性,例如对光照和角度敏感、模板库需要维护等。为了克服这些局限性,人们不断研究新的算法和技术,例如深度学习、卷积神经网络等,以提高车牌识别的准确率和鲁棒性。相信随着技术的不断发展,车牌识别技术将得到更广泛的应用,为人们的生活带来更多便利。

⛳️ 运行结果

🔗 参考文献

​[1]杨思源. 基于OPENCV的车辆牌照识别系统研究. Diss. 西安电子科技大学.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值