✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文根据北极海雀的生存和捕食行为,创新地提出了北极海雀优化算法(APO)。APO包括空中飞行(勘探)和水下搜寻(开发)阶段。在勘探阶段,引入了莱维飞行和速度因子机制,提高了算法从局部最优跳出的能力,提高了收敛速度。在开发阶段,利用协同效应和自适应变化因素等策略,确保算法能够有效地利用当前的最佳解决方案,指导搜索方向。此外,勘探和开发阶段之间的动态过渡是通过行为转换因子实现的,有效地平衡了全球搜索和地方发展。为了验证APO算法的发展和适用性,将其与九种先进的优化算法进行了比较。在三个测试组中,APO算法分别占72%、70%和75%,优于其他比较算法。与此同时,从统计学的角度看,威尔科克森标记级测试结果和弗里德曼等级平均值证明了APO算法的优越性。此外,在13个实际工程问题上,APO在85%的测试案例中优于其他比较算法,表明其在解决复杂的实际世界优化问题方面的潜力。总之,APO以其优异的性能证明了它在解决各种复杂的优化问题中的实用价值和优势。
⛳️ 运行结果
🔗 参考文献
Wen-chuan Wang, Wei-can Tian, Dong-mei Xu, Hong-fei Zang. Arctic Puffin Optimization: A Bio-inspired metaheuristic Algorithm for Solving Engineering Design Optimization. Advances in Engineering Software, 2024,195, 103694. https://doi.org/10.1016/j.advengsoft.2024.103694
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类