✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
基于注意力机制的卷积神经网络(CNN)结合长短记忆神经网络(LSTM)和注意力(Attention)机制的模型(CNN-LSTM-Attention)是一种深度学习架构,它结合了CNN在空间特征提取方面的优势,LSTM在时间序列数据处理方面的优势,以及注意力机制在重要特征筛选方面的优势。以下是基于这种模型的温度预测原理介绍:
1. 数据预处理
在进行温度预测之前,通常需要对时间序列数据进行预处理,这可能包括:
-
数据清洗:移除异常值和缺失值。
-
特征工程:提取与温度预测相关的特征,如历史温度、湿度、风速等。
-
数据归一化:将数据缩放到一个小的数值范围内,以加速模型训练。
2. 卷积神经网络(CNN)
CNN用于从数据中提取空间特征。在温度预测中,CNN可以处理例如地理位置信息、不同气象站点数据等空间分布信息。
-
卷积层:通过卷积操作提取局部特征。
-
池化层:减小特征的空间维度,保留重要信息。
-
全连接层:将提取的特征转换为固定长度的向量。
3. 长短记忆神经网络(LSTM)
LSTM用于处理时间序列数据,它能够捕捉时间序列中的长期依赖关系。
-
遗忘门:决定哪些信息应该从单元状态中丢弃。
-
输入门:决定哪些新的信息被存储在单元状态中。
-
输出门:决定下一个隐藏状态应该包含的信息。
4. 注意力机制(Attention)
注意力机制可以帮助模型聚焦于输入序列中最重要的部分,而不是将注意力平均分配给所有输入。
-
计算权重:为序列中的每个元素分配一个权重,表示其重要性。
-
加权求和:对序列进行加权求和,得到一个代表序列重要信息的固定长度向量。
CNN-LSTM-Attention 结合模型
将CNN、LSTM和Attention结合在一起,可以构建一个强大的温度预测模型:
-
CNN层:首先,使用CNN层处理空间数据,提取空间特征。
-
LSTM层:然后,将CNN的输出传递给LSTM层,以处理时间序列数据,并捕获长期依赖关系。
-
注意力层:接下来,应用注意力机制来确定输入序列中的关键信息。
-
全连接层和输出层:最后,使用全连接层来整合所有特征,并输出温度预测结果。
温度预测原理
在温度预测中,CNN-LSTM-Attention模型的工作原理如下:
-
特征提取:CNN从空间分布数据中提取特征,LSTM处理时间序列数据,捕获历史温度趋势。
-
时间依赖性建模:LSTM通过其门控结构来建模温度的时间依赖性。
-
重要性聚焦:注意力机制使模型能够关注对当前温度预测最重要的历史数据。
-
预测生成:模型基于提取的特征和时间依赖性生成未来的温度预测。
这种模型能够有效地处理复杂的温度预测问题,因为它能够同时考虑空间分布特征和时间序列的动态变化。
⛳️ 运行结果
🔗 参考文献
[1] 张昱,陈广书,李继涛,等.基于Attention机制的CNN-LSTM时序预测方法研究与应用[J].内蒙古大学学报:自然科学版, 2022.
[2] 王坤,侯树贤.基于深度学习的辅助动力装置性能参数预测方法研究[J]. 2022.DOI:10.13675/j.cnki.tjjs.200580.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类