基于注意力机制的卷积神经网络结合长短记忆神经网络CNN-LSTM-Attention实现温度预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

基于注意力机制的卷积神经网络(CNN)结合长短记忆神经网络(LSTM)和注意力(Attention)机制的模型(CNN-LSTM-Attention)是一种深度学习架构,它结合了CNN在空间特征提取方面的优势,LSTM在时间序列数据处理方面的优势,以及注意力机制在重要特征筛选方面的优势。以下是基于这种模型的温度预测原理介绍:

1. 数据预处理

在进行温度预测之前,通常需要对时间序列数据进行预处理,这可能包括:

  • 数据清洗:移除异常值和缺失值。

  • 特征工程:提取与温度预测相关的特征,如历史温度、湿度、风速等。

  • 数据归一化:将数据缩放到一个小的数值范围内,以加速模型训练。

2. 卷积神经网络(CNN)

CNN用于从数据中提取空间特征。在温度预测中,CNN可以处理例如地理位置信息、不同气象站点数据等空间分布信息。

  • 卷积层:通过卷积操作提取局部特征。

  • 池化层:减小特征的空间维度,保留重要信息。

  • 全连接层:将提取的特征转换为固定长度的向量。

3. 长短记忆神经网络(LSTM)

LSTM用于处理时间序列数据,它能够捕捉时间序列中的长期依赖关系。

  • 遗忘门:决定哪些信息应该从单元状态中丢弃。

  • 输入门:决定哪些新的信息被存储在单元状态中。

  • 输出门:决定下一个隐藏状态应该包含的信息。

4. 注意力机制(Attention)

注意力机制可以帮助模型聚焦于输入序列中最重要的部分,而不是将注意力平均分配给所有输入。

  • 计算权重:为序列中的每个元素分配一个权重,表示其重要性。

  • 加权求和:对序列进行加权求和,得到一个代表序列重要信息的固定长度向量。

CNN-LSTM-Attention 结合模型

将CNN、LSTM和Attention结合在一起,可以构建一个强大的温度预测模型:

  1. CNN层:首先,使用CNN层处理空间数据,提取空间特征。

  2. LSTM层:然后,将CNN的输出传递给LSTM层,以处理时间序列数据,并捕获长期依赖关系。

  3. 注意力层:接下来,应用注意力机制来确定输入序列中的关键信息。

  4. 全连接层和输出层:最后,使用全连接层来整合所有特征,并输出温度预测结果。

温度预测原理

在温度预测中,CNN-LSTM-Attention模型的工作原理如下:

  • 特征提取:CNN从空间分布数据中提取特征,LSTM处理时间序列数据,捕获历史温度趋势。

  • 时间依赖性建模:LSTM通过其门控结构来建模温度的时间依赖性。

  • 重要性聚焦:注意力机制使模型能够关注对当前温度预测最重要的历史数据。

  • 预测生成:模型基于提取的特征和时间依赖性生成未来的温度预测。

这种模型能够有效地处理复杂的温度预测问题,因为它能够同时考虑空间分布特征和时间序列的动态变化。

⛳️ 运行结果

🔗 参考文献

[1] 张昱,陈广书,李继涛,等.基于Attention机制的CNN-LSTM时序预测方法研究与应用[J].内蒙古大学学报:自然科学版, 2022.

[2] 王坤,侯树贤.基于深度学习的辅助动力装置性能参数预测方法研究[J].  2022.DOI:10.13675/j.cnki.tjjs.200580.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值