【Transformer回归预测】基于贝叶斯网络BO-Transformer-GRU实现负荷数据回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

1. 引言

电力负荷预测是电力系统规划、调度和运行的重要基础,其准确性直接影响到电网的安全稳定运行和经济效益。传统负荷预测方法大多基于统计模型或机器学习方法,例如自回归模型、支持向量机等,但在处理复杂非线性关系、多维特征和时间序列特征方面存在局限性。近年来,深度学习技术的飞速发展,特别是Transformer和GRU等神经网络模型的出现,为电力负荷预测提供了新的思路。

Transformer模型在自然语言处理领域取得了巨大成功,其强大的并行计算能力和自注意力机制使其能够有效地捕捉时间序列数据的长程依赖关系。GRU模型则是一种循环神经网络,擅长处理时间序列数据,并能够有效地学习时间序列特征。

本文提出一种基于贝叶斯优化和Transformer-GRU的负荷预测模型,即BO-Transformer-GRU。该模型结合了贝叶斯网络优化、Transformer和GRU的优势,能够更准确地预测电力负荷。

2. 模型框架

BO-Transformer-GRU模型的框架如图1所示,主要包括三个部分:

  • 数据预处理: 对原始负荷数据进行清洗、归一化、特征工程等预处理操作。

  • Transformer-GRU模型: 该模型由Transformer和GRU两部分组成,其中Transformer用于提取负荷数据的长程依赖关系,GRU则用于学习时间序列特征。

  • 贝叶斯优化: 使用贝叶斯优化方法对模型参数进行优化,以提高模型预测精度。

图1 BO-Transformer-GRU模型框架

3. 模型细节

3.1 Transformer部分

Transformer部分采用多头注意力机制,能够有效地捕捉负荷数据的时间依赖关系。具体实现如下:

1) 输入编码: 将负荷数据输入到Transformer模型,进行词嵌入和位置编码操作。

2) 多头注意力机制: 利用多头注意力机制,计算每个时间步的特征向量之间的相关性,并生成新的特征向量。

3) 前馈神经网络: 将多头注意力机制的输出输入到前馈神经网络中,进一步提取特征。

4) 输出: 输出Transformer模块的最终输出,作为GRU模块的输入。

3.2 GRU部分

GRU部分采用门控循环单元,能够有效地学习时间序列特征。具体实现如下:

1) 输入: 将Transformer模块的输出作为GRU模块的输入。

2) 门控机制: 利用门控机制,控制信息在时间步之间的流动,并有效地提取时间序列特征。

3) 输出: 输出GRU模块的最终输出,作为负荷预测结果。

3.3 贝叶斯优化

贝叶斯优化是一种基于概率模型的优化方法,能够有效地搜索模型参数空间,以找到最佳模型参数。具体实现如下:

1) 初始化: 初始化模型参数,并进行初始训练。

2) 建立代理模型: 使用高斯过程等概率模型建立模型参数空间的代理模型。

3) 选择候选点: 利用代理模型,选择下一个候选参数点,并进行模型训练。

4) 更新代理模型: 利用训练结果更新代理模型。

5) 重复步骤3和4,直到找到最佳参数点。

4. 实验结果

本文使用某地区历史负荷数据进行实验,并与其他模型进行比较。实验结果表明,BO-Transformer-GRU模型在预测精度、稳定性和鲁棒性方面均优于其他模型。

实验结果表明,BO-Transformer-GRU模型的预测精度明显优于其他模型,这得益于贝叶斯优化对模型参数的有效优化,以及Transformer和GRU对时间序列数据的强大处理能力。

5. Matlab代码

 

% 数据预处理
data = load('负荷数据.mat');
data = data.load;
data = preprocess(data);

% 模型训练
model = BO_Transformer_GRU(data);
model = train(model);

% 负荷预测
predict = predict(model, data);

% 评估模型性能
evaluate(model, predict, data);

% 绘制预测结果
plot(predict, data);

6. 结论

本文提出了一种基于贝叶斯优化和Transformer-GRU的负荷预测模型,该模型能够有效地捕捉负荷数据的非线性关系、多维特征和时间序列特征,并具有更高的预测精度和稳定性。实验结果表明,该模型在实际应用中具有较大的潜力。

7. 未来工作

未来工作将继续研究和改进BO-Transformer-GRU模型,包括:

  • 研究更先进的贝叶斯优化方法,以提高模型参数的优化效率。

  • 探索更有效的Transformer和GRU模型结构,以提高模型的预测精度。

  • 将该模型应用于更复杂的电力系统场景,例如包含分布式电源、电动汽车等的新型电力系统。

⛳️ 运行结果

🔗 参考文献

[1] 郑育靖,何强,张长伦,等.基于GRU-Attention的无监督多变量时间序列异常检测[J].山西大学学报:自然科学版, 2020.DOI:10.13451/j.sxu.ns.2020062.

[2] 申志豪,李娜,尹世豪,等.基于TPA-Transformer的机票价格预测[J].数据与计算发展前沿, 2023, 5(6):115-125.

[3] 梁云斌.基于SSA-GRU模型的城市交通事故时间序列分析及预测[J].中国科技期刊数据库 工业A, 2023(4):5.

[4] 梁云斌.基于SSA-GRU模型的城市交通事故时间序列分析及预测[J].中国科技期刊数据库 工业A, 2023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Transformer回归预测是一种基于Transformer模型的机器学习方法,用于解决回归问题。Transformer模型是一种基于自注意力机制的神经网络模型,最初用于自然语言处理任务,如机器翻译和文本生成。但是,由于其强大的建模能力和并行计算的优势,Transformer模型也被应用于其他领域,包括回归预测。 在Transformer回归预测中,输入数据通常是一个向量或矩阵,表示待预测的特征。这些特征可以是时间序列数据、图像数据或其他类型的数据Transformer模型通过多层的自注意力机制和前馈神经网络来学习输入数据之间的关系,并输出一个连续值作为预测结果。 与传统的回归方法相比,Transformer回归预测具有以下优势: 1. 并行计算:Transformer模型可以并行计算输入数据中不同位置的特征,从而加快训练和推理的速度。 2. 长程依赖建模:Transformer模型使用自注意力机制来捕捉输入数据中不同位置之间的长程依赖关系,有助于提高预测的准确性。 3. 可扩展性:Transformer模型可以通过增加层数和隐藏单元数来增加模型的容量,从而适应更复杂的回归任务。 然而,Transformer回归预测也存在一些挑战: 1. 数据量要求高:Transformer模型通常需要大量的训练数据来获得良好的性能,特别是在复杂的回归任务中。 2. 超参数选择:Transformer模型有许多超参数需要调整,如层数、隐藏单元数和学习率等,选择合适的超参数对于模型的性能至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值