【中科院1区】Matlab实现牛顿拉夫逊优化算法NRBO-RF锂电池健康状态估计算法研究

   ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

随着电动汽车和储能系统的快速发展,锂离子电池作为核心能源组件,其安全性和可靠性至关重要。电池健康状态估算 (SOH) 对于预测电池性能衰退,保证电池安全运行至关重要。本文针对锂电池SOH估计问题,提出了一种基于牛顿拉夫逊优化算法 (NRBO) 的随机森林 (RF) 算法,即NRBO-RF算法。该算法通过将NRBO算法引入RF模型训练过程中,有效提升了模型的精度和泛化能力。通过Matlab仿真实验,验证了NRBO-RF算法在不同工况下对锂电池SOH估计的有效性和优越性。

关键词:锂电池,健康状态估算,牛顿拉夫逊优化算法,随机森林,Matlab

1. 引言

锂离子电池作为高效、安全的储能装置,广泛应用于电动汽车、便携式电子设备、储能系统等领域。随着电池的使用,其性能会逐渐衰退,容量下降,内阻增加,导致电池的循环寿命降低,甚至出现安全问题。因此,准确估计锂电池的健康状态 (SOH) 对保证电池的安全可靠运行至关重要。

传统的SOH估算方法主要依赖于电池的开路电压、电流、温度等参数,通过建立电池模型进行预测。然而,这些方法往往存在模型精度低、参数难以辨识等问题。近年来,机器学习算法因其强大的数据拟合能力和自适应性,在电池SOH估算领域得到广泛应用。

随机森林 (RF) 算法是一种集成学习算法,通过构建多个决策树模型,并进行投票预测,有效提高了模型的预测精度和泛化能力。然而,RF模型的训练过程通常依赖于随机梯度下降法,容易陷入局部最优,影响模型的性能。

为了克服RF模型的训练缺陷,本文提出了一种基于牛顿拉夫逊优化算法 (NRBO) 的随机森林算法,即NRBO-RF算法。NRBO算法是一种基于梯度下降的优化算法,能够有效解决RF模型的训练过程中的局部最优问题,提升模型精度。

2. 锂电池SOH估算模型

2.1 锂电池模型

本文采用等效电路模型 (ECM) 来描述锂电池的特性。ECM模型将电池等效为一个理想电压源、一个串联电阻和一个并联RC电路,能够有效描述电池的电压、电流、温度等特性。

2.2 随机森林 (RF) 模型

RF模型是一种集成学习算法,通过构建多个决策树模型,并进行投票预测,有效提高了模型的预测精度和泛化能力。RF模型的训练过程主要包括:

  • 数据集划分:将训练数据集随机分成多个子数据集。
  • 决策树构建:对每个子数据集,构建一颗决策树。
  • 投票预测:对于新的测试样本,将所有决策树的预测结果进行投票,得到最终的预测结果。

2.3 牛顿拉夫逊优化算法 (NRBO)

NRBO算法是一种基于梯度下降的优化算法,通过迭代更新模型参数,使其逼近最优解。NRBO算法的具体步骤如下:

  • 初始化参数:设定初始参数值。
  • 梯度计算:计算目标函数的梯度。
  • 参数更新:根据梯度方向更新参数。
  • 迭代更新:重复步骤2和3,直到满足停止条件。

3. NRBO-RF算法

本文将NRBO算法引入RF模型的训练过程中,提出了一种新的SOH估算算法,即NRBO-RF算法。NRBO-RF算法的步骤如下:

  • 数据预处理:对采集的电池数据进行预处理,包括数据清洗、特征提取等。
  • RF模型训练:利用NRBO算法对RF模型进行训练,优化模型参数。
  • SOH估计:利用训练好的NRBO-RF模型对电池的SOH进行估计。

4. 仿真实验

4.1 实验数据

实验数据来自公开数据集,包含不同工况下锂电池的电压、电流、温度等数据。

4.2 实验设置

  • 实验平台:Matlab
  • 算法对比:NRBO-RF算法、RF算法、支持向量机 (SVM) 算法。
  • 评价指标:均方根误差 (RMSE)、平均绝对误差 (MAE)、决定系数 (R-squared)。

4.3 实验结果

仿真实验结果表明,NRBO-RF算法在不同工况下对锂电池SOH估计的RMSE、MAE和R-squared均优于RF算法和SVM算法,说明NRBO-RF算法具有更高的精度和泛化能力。

5. 结论

本文提出了一种基于牛顿拉夫逊优化算法的随机森林算法,即NRBO-RF算法,用于锂电池健康状态估算。通过Matlab仿真实验,验证了NRBO-RF算法在不同工况下对锂电池SOH估计的有效性和优越性。该算法能够有效提升RF模型的精度和泛化能力,为锂电池的健康状态监测和管理提供了一种有效的工具。

未来研究方向

  • 将NRBO-RF算法应用于实际电池管理系统 (BMS) 中,进一步验证其实用性。
  • 研究NRBO-RF算法的鲁棒性,提升其对噪声和干扰的抗干扰能力。
  • 探索更有效的特征提取方法,提高NRBO-RF算法的预测精度。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值