Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

本文提出了一种基于 SMA-Transformer-LSTM 架构的多变量回归预测模型,并利用黏菌算法对其参数进行优化。该模型结合了自适应移动平均 (SMA) 技术、Transformer 模型和长短期记忆网络 (LSTM),能够有效地捕捉时间序列数据中的复杂非线性关系和长期依赖性。黏菌算法作为一种新型的智能优化算法,能够在模型训练过程中自动搜索最优参数组合,提升预测精度。实验结果表明,该模型在多个真实数据集上的预测效果优于传统模型,展现了其在多变量回归预测领域的强大优势。

1. 问题背景

多变量回归预测是时间序列分析中一项重要的任务,其目标是根据多个时间序列变量的历史数据预测未来值。在实际应用中,许多系统和过程都具有复杂的非线性关系和长期依赖性,传统的回归模型难以有效地捕捉这些特性,导致预测精度不高。

2. 模型框架

为了解决上述问题,本文提出了 SMA-Transformer-LSTM 模型,其架构如图1所示。

图1. SMA-Transformer-LSTM 模型框架

模型主要包含以下几个部分:

  • 自适应移动平均 (SMA): 用于对原始数据进行预处理,去除噪声和趋势,提高数据的平稳性。

  • Transformer 模型: 能够捕捉数据中的长期依赖性,并通过自注意力机制学习到变量之间的复杂关系。

  • 长短期记忆网络 (LSTM): 能够学习时间序列数据中的短期依赖性,并通过门控机制有效地处理梯度消失问题。

3. 黏菌算法优化

为了提升模型的预测精度,本文采用黏菌算法对模型参数进行优化。黏菌算法是一种新型的智能优化算法,其灵感来源于黏菌的觅食行为。该算法通过模拟黏菌的运动轨迹和信息传递机制,能够在复杂搜索空间中高效地寻找最优解。

在模型训练过程中,黏菌算法将模型参数作为搜索对象,通过不断调整参数组合,找到使模型预测误差最小的参数配置。该算法能够有效地避免陷入局部最优,提高模型的泛化能力。

4. 实验结果

为了验证模型的有效性,本文在多个真实数据集上进行了实验,并将结果与传统模型进行比较。实验结果表明,SMA-Transformer-LSTM 模型的预测精度显著优于其他模型,特别是对于具有复杂非线性关系和长期依赖性的数据集,该模型的优势更加明显。

图2. 不同模型在不同数据集上的预测结果比较

5. 结论

本文提出的 SMA-Transformer-LSTM 模型结合了 SMA、Transformer 和 LSTM 的优势,并利用黏菌算法进行参数优化,能够有效地捕捉时间序列数据中的复杂非线性关系和长期依赖性,提升多变量回归预测的精度。该模型在多个真实数据集上的实验结果表明其具有良好的性能,展现了其在时间序列分析领域的应用潜力。

6. 未来展望

未来研究将继续探索改进模型性能的方法,包括:

  • 尝试引入更先进的深度学习模型,例如卷积神经网络 (CNN) 或生成对抗网络 (GAN),进一步提高模型的表达能力。

  • 探索更有效的参数优化算法,例如遗传算法 (GA) 或粒子群优化算法 (PSO),提升模型的搜索效率。

  • 将模型应用于更复杂的时间序列问题,例如金融市场预测、交通流量预测等,进一步验证模型的实用性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值