✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种基于 SMA-Transformer-LSTM 架构的多变量回归预测模型,并利用黏菌算法对其参数进行优化。该模型结合了自适应移动平均 (SMA) 技术、Transformer 模型和长短期记忆网络 (LSTM),能够有效地捕捉时间序列数据中的复杂非线性关系和长期依赖性。黏菌算法作为一种新型的智能优化算法,能够在模型训练过程中自动搜索最优参数组合,提升预测精度。实验结果表明,该模型在多个真实数据集上的预测效果优于传统模型,展现了其在多变量回归预测领域的强大优势。
1. 问题背景
多变量回归预测是时间序列分析中一项重要的任务,其目标是根据多个时间序列变量的历史数据预测未来值。在实际应用中,许多系统和过程都具有复杂的非线性关系和长期依赖性,传统的回归模型难以有效地捕捉这些特性,导致预测精度不高。
2. 模型框架
为了解决上述问题,本文提出了 SMA-Transformer-LSTM 模型,其架构如图1所示。
图1. SMA-Transformer-LSTM 模型框架
模型主要包含以下几个部分:
-
自适应移动平均 (SMA): 用于对原始数据进行预处理,去除噪声和趋势,提高数据的平稳性。
-
Transformer 模型: 能够捕捉数据中的长期依赖性,并通过自注意力机制学习到变量之间的复杂关系。
-
长短期记忆网络 (LSTM): 能够学习时间序列数据中的短期依赖性,并通过门控机制有效地处理梯度消失问题。
3. 黏菌算法优化
为了提升模型的预测精度,本文采用黏菌算法对模型参数进行优化。黏菌算法是一种新型的智能优化算法,其灵感来源于黏菌的觅食行为。该算法通过模拟黏菌的运动轨迹和信息传递机制,能够在复杂搜索空间中高效地寻找最优解。
在模型训练过程中,黏菌算法将模型参数作为搜索对象,通过不断调整参数组合,找到使模型预测误差最小的参数配置。该算法能够有效地避免陷入局部最优,提高模型的泛化能力。
4. 实验结果
为了验证模型的有效性,本文在多个真实数据集上进行了实验,并将结果与传统模型进行比较。实验结果表明,SMA-Transformer-LSTM 模型的预测精度显著优于其他模型,特别是对于具有复杂非线性关系和长期依赖性的数据集,该模型的优势更加明显。
图2. 不同模型在不同数据集上的预测结果比较
5. 结论
本文提出的 SMA-Transformer-LSTM 模型结合了 SMA、Transformer 和 LSTM 的优势,并利用黏菌算法进行参数优化,能够有效地捕捉时间序列数据中的复杂非线性关系和长期依赖性,提升多变量回归预测的精度。该模型在多个真实数据集上的实验结果表明其具有良好的性能,展现了其在时间序列分析领域的应用潜力。
6. 未来展望
未来研究将继续探索改进模型性能的方法,包括:
-
尝试引入更先进的深度学习模型,例如卷积神经网络 (CNN) 或生成对抗网络 (GAN),进一步提高模型的表达能力。
-
探索更有效的参数优化算法,例如遗传算法 (GA) 或粒子群优化算法 (PSO),提升模型的搜索效率。
-
将模型应用于更复杂的时间序列问题,例如金融市场预测、交通流量预测等,进一步验证模型的实用性。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类