✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、 问题背景与分析
2021年全国大学生数学建模竞赛C题,题目为“生产企业原材料的订购和运输方案规划”。该题目模拟了一个生产企业的实际问题,要求参赛者根据企业的生产需求、原材料供应商信息、运输成本等因素,制定最佳的原材料订购和运输方案,以最小化企业的总成本。
该问题是一个典型的物流优化问题,涉及多个关键因素:
-
订购策略: 需确定每次订购的原材料数量、订购时间等。
-
运输方案: 需确定原材料的运输路线、运输方式等。
-
成本控制: 需考虑原材料采购成本、运输成本、库存成本等。
二、 模型建立
为了解决该问题,可以建立一个多目标优化模型,以最小化企业的总成本为目标函数,并考虑以下约束条件:
-
需求满足约束: 每个生产周期内,原材料订购量需满足生产需求。
-
库存容量约束: 仓库的库存容量有限,需保证原材料库存不超过仓库容量。
-
运输容量约束: 运输车辆的运载能力有限,需保证单次运输的原材料数量不超过车辆运载能力。
-
供应商供应约束: 每个供应商的供货能力有限,需保证订购量不超过供应商的供应能力。
-
运输时间约束: 原材料的运输时间需满足生产需求时间。
三、 模型求解
本题可以使用Matlab进行模型求解,主要步骤如下:
-
数据读取和预处理: 读取题目给定的数据,并进行必要的预处理,如将数据转换为矩阵形式,对数据进行归一化等。
-
模型建立: 利用Matlab的优化工具箱,建立多目标优化模型,包括目标函数和约束条件。
-
模型求解: 使用Matlab的优化算法,如遗传算法、粒子群算法、模拟退火算法等,对模型进行求解,得到最佳的订购和运输方案。
-
结果分析: 分析模型的求解结果,包括最佳订购方案、最佳运输方案、总成本等,并对结果进行可视化展示,以方便理解。
四、 代码实现
以下提供一个Matlab代码示例,用于解决该问题:
% 数据读取
data = readtable('data.csv'); % 读取数据文件
% 数据预处理
demand = data.Demand; % 生产需求
supply = data.Supply; % 供应商供货能力
cost = data.Cost; % 运输成本
capacity = data.Capacity; % 仓库容量
% 模型建立
% 定义决策变量
x = binvar(size(supply)); % 订购决策变量
y = binvar(size(supply,1),size(supply,2)); % 运输决策变量
% 定义目标函数
obj = sum(cost.*x.*y); % 总成本
% 定义约束条件
constraints = [sum(x.*y,2) == demand, % 满足需求约束
sum(x.*y,1) <= supply, % 满足供应商供应约束
sum(x.*y,1) <= capacity, % 满足仓库容量约束];
% 模型求解
opts = optimoptions('intlinprog','Display','off'); % 设置求解选项
[solution, fval] = intlinprog(obj, [], [], [], [], [], constraints, opts);
% 结果分析
x_optimal = solution(1:end/2); % 最佳订购方案
y_optimal = reshape(solution(end/2+1:end), size(supply)); % 最佳运输方案
total_cost = fval; % 总成本
% 可视化结果
figure;
bar(x_optimal);
title('最佳订购方案');
xlabel('供应商');
ylabel('订购量');
figure;
imshow(y_optimal);
title('最佳运输方案');
disp(['总成本:', num2str(total_cost)]);
五、 总结
本篇文章针对2021年数学建模国赛C题,介绍了如何使用Matlab进行原材料的订购和运输方案规划。通过建立多目标优化模型,并利用Matlab的优化工具箱进行求解,可以得到最佳的订购和运输方案,以最小化企业的总成本。
六、 未来展望
该问题的研究可以进一步深化,例如:
-
考虑更复杂的约束条件,如运输时间窗口约束、运输路径约束等。
-
引入随机因素,例如需求波动、运输延迟等,对模型进行鲁棒性分析。
-
研究更先进的优化算法,例如蚁群算法、混合整数规划等,以提高模型求解效率和精度。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类