✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
嗅觉作为一项基本的感觉模式,在动物和人类行为中起着至关重要的作用(Gottfried, 2010; McGann, 2017)。然而,人类嗅觉的神经机制,尤其是在单神经元水平上,仍然知之甚少。本研究首次在清醒人类进行气味评级和识别任务时,记录了梨状皮层和内侧颞叶(MTL)的单神经元活动。我们发现梨状皮层、杏仁核、内嗅皮层和海马体中存在气味调控的神经元。在这些脑区中,神经元的放电模式准确地编码了气味的身份。值得注意的是,重复的气味呈现会降低神经元的放电频率,展现出中央重复抑制和习惯化现象。不同的 MTL 区域在气味处理中扮演着不同的角色:杏仁核神经元编码气味的主观价值,而海马体神经元预测气味识别行为的表现。尽管梨状皮层神经元更倾向于编码气味的化学身份,但海马体的活动反映了主观的气味感知。重要的是,我们发现梨状皮层神经元可靠地编码了与气味相关的图像,表明人类梨状皮层在多感官整合中扮演着重要角色。我们还观察到气味和图像之间显著的跨感官编码,尤其是在杏仁核和梨状皮层。此外,我们发现了一些神经元对语义连贯的气味和图像信息作出反应,证明了嗅觉中的概念编码方案。
我们的研究结果弥合了动物模型和非侵入性人类研究之间的长期差距,并通过揭示之前未知的神经元气味编码原理、区域功能差异和跨感官整合,推动了我们对人类大脑嗅觉处理的理解。
研究亮点
-
首次记录人类梨状皮层和内侧颞叶(MTL)中单神经元对气味的反应。
-
发现不同 MTL 脑区在气味处理中的功能特化:杏仁核编码气味价值,海马体预测气味识别行为。
-
梨状皮层神经元编码气味身份,海马体神经元反映主观气味感知。
-
发现梨状皮层神经元编码气味相关的图像,表明梨状皮层的跨感官整合功能。
-
观察到杏仁核和梨状皮层中气味和图像之间的跨感官编码。
-
发现对语义连贯的气味和图像信息作出反应的神经元,揭示嗅觉中的概念编码。
研究意义
本研究为理解人类嗅觉的神经机制提供了重要的见解。通过揭示单神经元水平上的气味编码原理,我们对嗅觉信息在不同脑区之间的传递和处理有了更深入的了解。这些发现不仅扩展了我们对嗅觉的认识,而且也为研究其他感官信息的处理方式提供了新的思路。
未来展望
未来的研究可以继续探索人类嗅觉的神经机制,例如:
-
进一步研究不同 MTL 脑区在气味处理中的具体机制,以及它们之间的相互作用。
-
研究不同气味特征,例如气味强度和复杂度,对神经元活动的影响。
-
研究气味与其他感官信息,例如视觉和听觉,之间的交互作用。
这些研究将有助于我们更全面地了解人类嗅觉的神经机制,以及嗅觉在人类行为中的作用。
⛳️ 运行结果
🔗 参考文献
This repository contains codes and data associated with the paper Single-Neuron Representations of Odors in the Human Brainby Kehl et al. 2024.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类