✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
交通流量预测作为智能交通系统 (ITS) 的核心组成部分,其精度直接影响着交通管理决策的效率和城市交通的运行状态。传统的交通流量预测方法往往依赖于单一模型,难以捕捉交通数据中复杂的时空依赖性和非线性特征。本文提出一种创新性的多变量回归交通流量预测方法,该方法融合了LightGBM (Light Gradient Boosting Machine)、Bayesian Optimization (BO)优化的Transformer和LSTM (Long Short-Term Memory) 网络,并基于Matlab平台实现了该算法,显著提升了预测精度和效率。
首先,我们需要明确多变量交通流量预测所面临的挑战。交通流量数据具有高度的非线性、时空相关性和噪声性。传统的线性模型如ARIMA难以捕捉这些复杂特征,而深度学习模型如LSTM虽然能够学习长时序依赖,但其参数众多,易于过拟合,且训练效率较低。因此,本文提出了一种结合LightGBM、BO优化的Transformer和LSTM的混合模型,以充分发挥各个模型的优势,克服单一模型的局限性。
该模型的核心思想是将Transformer和LSTM分别用于捕捉数据的时空特征,并利用LightGBM进行最终的回归预测。具体而言,我们将交通流量数据视为一个时空序列,利用Transformer的注意力机制提取数据的时空特征,并利用LSTM学习数据的长期依赖关系。Transformer的注意力机制能够有效地捕捉不同时间步和不同变量之间的关联,而LSTM则能够有效地学习长时序依赖,从而更好地捕捉交通流量数据的动态变化。
然而,Transformer和LSTM的参数众多,需要进行精细的调参才能获得最佳性能。传统的网格搜索方法效率低下,难以找到最优参数组合。为此,本文采用Bayesian Optimization (BO) 算法对Transformer和LSTM的超参数进行优化。BO算法通过构建概率模型来模拟目标函数,并根据模型的预测结果选择下一个待评估的超参数组合,从而高效地搜索最优参数。通过BO算法的优化,我们可以有效地减少模型训练的时间和资源消耗,并获得更好的预测精度。
在模型的最终输出阶段,我们使用LightGBM进行回归预测。LightGBM是一种基于梯度提升决策树的算法,具有训练速度快、预测精度高的优点。它能够有效地处理高维数据,并对噪声数据具有较强的鲁棒性。将Transformer和LSTM提取的特征作为LightGBM的输入,可以有效地利用这两个模型学习到的时空特征,最终实现对交通流量的精确预测。
Matlab作为一种强大的数值计算软件,提供了丰富的工具箱和函数,可以方便地实现该混合模型。本文利用Matlab实现了整个算法流程,包括数据预处理、模型训练、参数优化和预测评估等环节。在实现过程中,我们充分利用了Matlab的并行计算能力,以提高模型的训练效率。
为了验证该方法的有效性,我们进行了大量的实验,并与其他几种常用的交通流量预测方法进行了比较,例如ARIMA、LSTM、以及单独使用LightGBM的方法。实验结果表明,该混合模型在预测精度和效率方面均具有显著的优势。具体而言,该模型在各种评估指标上,例如RMSE (均方根误差)、MAE (平均绝对误差) 和MAPE (平均绝对百分比误差) 等,均取得了比其他方法更好的结果。这证明了本文提出的LightGBM+BO-Transformer-LSTM模型在多变量交通流量预测中的有效性。
最后,我们对该方法进行了总结和展望。本文提出了一种创新性的多变量回归交通流量预测方法,该方法融合了LightGBM、BO优化的Transformer和LSTM,并基于Matlab平台实现了该算法。实验结果表明,该方法具有较高的预测精度和效率。未来研究可以进一步探索更复杂的模型结构,例如引入注意力机制到LightGBM中,或者结合其他数据源,例如气象数据和社会经济数据,以进一步提高预测精度。此外,还可以研究模型的可解释性,以更好地理解模型的预测结果。 总而言之,本文的研究为提高交通流量预测的精度和效率提供了新的思路和方法。
⛳️ 运行结果
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类