【Transformer回归预测】基于TCN-Transformer-lstm实现光伏数据预测附matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

光伏发电作为一种清洁可再生能源,其功率预测对于电网稳定运行和能源调度至关重要。然而,光伏功率具有显著的非线性、波动性和间歇性特征,使得精确预测成为一项极具挑战性的任务。近年来,深度学习技术,特别是Transformer模型及其变体,在时间序列预测领域展现出强大的能力。本文将探讨一种结合时间卷积网络 (Temporal Convolutional Network, TCN)、Transformer和长短期记忆网络 (Long Short-Term Memory, LSTM) 的混合模型,用于光伏功率预测,并提供相应的Matlab代码实现。

一、模型架构设计

本文提出的模型将TCN、Transformer和LSTM三个强大的神经网络模块有机结合,充分利用各自的优势,以提高光伏功率预测的精度和鲁棒性。具体架构如下:

  1. 输入层: 输入数据为历史光伏功率数据序列,通常包含多种特征,例如历史功率值、气象数据(日照强度、温度、风速等)、时间特征(小时、日期、季节等)。这些特征经过标准化或归一化预处理后输入模型。

  2. TCN层: TCN层用于提取光伏功率时间序列中的局部特征和模式。TCN采用因果卷积,避免了未来信息泄露,能够有效捕捉时间序列中的长期依赖关系。多层TCN堆叠可以进一步增强特征提取能力,且其参数量相对较少,不易过拟合。TCN层的输出作为Transformer层的输入。

  3. Transformer层: Transformer层是模型的核心部分,其强大的并行计算能力和全局注意力机制能够捕捉时间序列中长距离的依赖关系,有效解决LSTM等模型在处理长序列数据时存在的梯度消失问题。在本文中,我们采用多头注意力机制,进一步增强模型的表达能力。Transformer层输出包含丰富的时空特征信息。

  4. LSTM层: 虽然Transformer能够捕捉长距离依赖,但LSTM在处理序列数据方面也具有独特的优势,尤其在捕捉局部动态变化方面。因此,在Transformer层之后加入LSTM层,能够进一步细化特征,并对时间序列进行更精细的建模。LSTM层的输出作为全连接层的输入。

  5. 输出层: 输出层为全连接层,用于将LSTM层的输出映射到光伏功率预测值。输出值经过反标准化或反归一化处理,得到最终的预测结果。

二、Matlab代码实现

以下代码片段展示了模型的主要部分,由于完整的代码较为冗长,这里仅提供关键部分的示例。 请注意,这只是一个简化的示例,实际应用中需要根据具体数据和需求进行调整。

% 数据预处理
% ... (数据加载、清洗、标准化) ...

% TCN层
numLayers = 3; % TCN层数
kernelSize = 3; % 卷积核大小
TCN = dlnetwork( ... ); % 创建TCN网络,需要使用dlarray等函数进行具体定义

% Transformer层
numHeads = 8; % 多头注意力头数
dModel = 512; % 模型维度
Transformer = dlnetwork( ... ); % 创建Transformer网络,需要使用dlarray等函数进行具体定义,包含编码器和解码器

% LSTM层
numLSTMLayers = 2; % LSTM层数
hiddenSize = 256; % LSTM隐藏层大小
LSTM = dlnetwork( ... ); % 创建LSTM网络,需要使用dlarray等函数进行具体定义

% 全连接层
fcLayer = fullyConnectedLayer(1,'Name','fc'); % 输出层

% 模型组合
layers = [
TCN
Transformer
LSTM
fcLayer
];
net = dlnetwork(layers);


% 训练过程
% ... (使用dlarray函数构建训练数据,使用dltrainloop函数进行训练) ...


% 预测
% ... (加载训练好的模型,输入测试数据进行预测,并进行反标准化) ... 

三、模型评估与结果分析

模型的性能评估指标通常包括均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和R方 (R-squared) 等。通过这些指标可以衡量模型的预测精度。 此外,还需要进行模型的稳定性分析,考察其在不同数据集和不同预测时间范围内的性能。 为了提高预测精度,还可以考虑对模型进行超参数优化,例如调整网络层数、卷积核大小、学习率等。

四、结论与展望

本文提出了一种基于TCN-Transformer-LSTM的混合模型,用于光伏功率预测。该模型充分结合了TCN、Transformer和LSTM的优势,能够有效提取光伏功率时间序列中的时空特征,并提高预测精度。Matlab代码示例提供了一个基本的框架,可以根据实际需求进行改进和扩展。未来的研究可以集中在以下几个方面:

  • 改进模型架构: 探索更复杂的网络结构,例如引入注意力机制到TCN层,或者使用更先进的LSTM变体。

  • 数据增强: 利用数据增强技术提高模型的鲁棒性,特别是对于数据稀疏或噪声较大的情况。

  • 结合其他信息: 整合更多外部信息,例如天气预报、电网负荷等,以提高预测精度。

  • 模型部署与优化: 将训练好的模型部署到实际应用中,并进行优化以提高效率和稳定性。

总而言之,基于深度学习的光伏功率预测技术具有广阔的应用前景。通过不断改进模型和算法,可以实现更高精度、更鲁棒的光伏功率预测,为电网的稳定运行和能源的有效利用提供有力支撑。 本文的研究为光伏功率预测提供了一种新的思路和方法,也为进一步的研究提供了参考。

⛳️ 运行结果

🔗 参考文献

[1] 符杨,任子旭,魏书荣,等.基于改进LSTM-TCN模型的海上风电超短期功率预测[J].中国电机工程学报, 2022(012):042.

[2] 李飞宏,肖迎群.基于STL-LSTM-TCN模型的短期负荷预测方法[J].电子设计工程, 2023, 31(7):47-51.DOI:10.14022/j.issn1674-6236.2023.07.010.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值