✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 精确的车辆姿态、速度和位置估计是自动驾驶、机器人导航等领域的关键技术。本文深入探讨了基于扩展卡尔曼滤波 (Extended Kalman Filter, EKF) 的综合导航算法,用于融合来自不同传感器的数据,以提高估计精度和鲁棒性。文章首先介绍了车辆运动模型和常用的传感器模型,包括惯性测量单元 (IMU)、全球导航卫星系统 (GNSS) 和轮速传感器等。随后详细阐述了 EKF 算法的原理,并针对车辆导航应用进行了具体的推导和实现细节说明,包括状态向量、状态转移方程、测量方程以及协方差矩阵的更新。最后,通过仿真实验或实际数据分析,验证了所提出算法的有效性,并对算法的优缺点以及未来的研究方向进行了总结和展望。
关键词: 扩展卡尔曼滤波;综合导航;车辆姿态估计;速度估计;位置估计;IMU;GNSS;轮速传感器
1. 引言
在智能交通系统、自动驾驶和机器人技术等领域,对车辆姿态、速度和位置的精确估计至关重要。单一传感器往往存在测量噪声大、易受环境干扰等问题,难以满足高精度定位需求。因此,综合导航技术应运而生,它通过融合来自多个传感器的互补信息,以提高估计精度和可靠性。扩展卡尔曼滤波 (EKF) 作为一种经典的非线性状态估计方法,因其算法相对成熟、易于实现等优点,广泛应用于综合导航系统中。本文将详细阐述基于 EKF 的综合导航算法在车辆姿态、速度和位置估计中的应用。
2. 车辆运动模型与传感器模型
2.1 车辆运动模型: 本文采用常见的车辆动力学模型,例如自行车模型或更复杂的非线性模型。该模型描述了车辆在不同控制输入 (例如转向角、加速度) 下的状态变化。状态向量通常包括车辆的位置 (x, y, z),姿态 (滚转角 φ, 俯仰角 θ, 偏航角 ψ),速度 (vx, vy, vz) 以及其他可能的状态变量,例如车轮转速等。状态转移方程描述了状态向量随时间的演化关系,通常是一个非线性函数。
2.2 传感器模型: 常用的传感器包括:
-
惯性测量单元 (IMU): IMU 提供车辆的角速度和加速度信息。然而,IMU 存在零偏和漂移等误差,需要进行相应的补偿和校正。其测量模型需考虑这些误差源的影响。
-
全球导航卫星系统 (GNSS): GNSS 提供车辆的经纬度和高度信息,但容易受到遮挡和多路径效应的影响,精度在复杂的城市环境中会下降。GNSS 的测量模型需要考虑卫星几何位置、大气延迟等因素。
-
轮速传感器: 轮速传感器测量车轮的转速,可以间接推算车辆的速度。该传感器相对廉价,但容易受到轮胎打滑等因素的影响。
这些传感器模型通常假设测量噪声服从高斯分布,并给出相应的噪声协方差矩阵。
3. 扩展卡尔曼滤波算法
EKF 是一种递归的贝叶斯滤波算法,用于估计非线性系统的状态。它通过线性化非线性系统,将非线性问题转化为线性问题进行处理。EKF 主要包含以下步骤:
3.1 状态预测: 利用状态转移方程预测下一时刻的状态向量和协方差矩阵。由于状态转移方程通常是非线性的,需要对其进行一阶泰勒展开线性化。
3.2 测量更新: 将传感器的测量值与预测值进行融合,更新状态向量和协方差矩阵。该步骤涉及到测量方程的线性化以及卡尔曼增益的计算。卡尔曼增益表示了对预测值和测量值的信任程度。
3.3 协方差更新: 更新协方差矩阵,反映状态估计的不确定性。
上述步骤会迭代进行,不断更新状态估计和不确定性。EKF 的核心在于对非线性函数进行线性化,其精度依赖于线性化的准确性。当非线性程度较高时,EKF 的精度可能下降。
4. 基于EKF的综合导航算法实现
将上述车辆运动模型和传感器模型与 EKF 算法结合,构建基于 EKF 的综合导航算法。具体实现步骤如下:
-
初始化: 初始化状态向量、协方差矩阵以及过程噪声协方差矩阵和测量噪声协方差矩阵。
-
状态预测: 利用车辆运动模型和上一时刻的状态估计,预测当前时刻的状态向量和协方差矩阵。
-
测量更新: 将来自 IMU、GNSS 和轮速传感器的测量值进行融合。针对每个传感器,需要根据其测量模型计算相应的测量方程和雅可比矩阵,用于线性化。
-
卡尔曼增益计算: 计算卡尔曼增益,用于权衡预测值和测量值。
-
状态更新: 利用卡尔曼增益更新状态向量和协方差矩阵。
-
迭代: 重复步骤 2-5,直到达到终止条件。
5. 仿真实验与结果分析
为了验证所提出算法的有效性,可以进行仿真实验或利用实际数据进行测试。仿真实验可以构建一个虚拟的车辆运动场景,并模拟各种传感器的测量数据。实际数据测试则需要采集来自真实车辆的传感器数据。通过比较不同算法的估计结果,可以评估算法的精度、鲁棒性和计算效率。
6. 结论与未来展望
本文详细介绍了基于扩展卡尔曼滤波的综合导航算法,用于估计车辆的姿态、速度和位置。通过融合来自不同传感器的测量信息,该算法能够有效提高估计精度和鲁棒性。然而,EKF 算法也存在一些局限性,例如线性化误差和计算复杂度等。未来研究可以探索更高级的非线性滤波算法,例如无迹卡尔曼滤波 (Unscented Kalman Filter, UKF) 或粒子滤波 (Particle Filter),以提高估计精度和处理更复杂的非线性系统。此外,还可以研究更鲁棒的传感器融合策略,以及如何处理传感器故障等问题。
📣 部分代码
function quat = AlignHeading( ...
quat, ... % quaternion state vector
magMea, ... % body frame magnetic flux measurements
declination) % Estimated magnetic field delination at current location
% Calculate the predicted magnetic declination
Tbn = Quat2Tbn(quat);
magMeasNED = Tbn*magMea;
predDec = atan2(magMeasNED(2),magMeasNED(1));
% Calculate the measurement innovation
innovation = predDec - declination;
if (innovation > pi)
innovation = innovation - 2*pi;
elseif (innovation < -pi)
innovation = innovation + 2*pi;
end
% form the NED rotation vector
deltaRotNED = -[0;0;innovation];
% rotate into body axes
% Calculate the body to nav cosine matrix
Tbn = Quat2Tbn(quat);
deltaRotBody = transpose(Tbn)*deltaRotNED;
% Convert the error rotation vector to its equivalent quaternion
% error = truth - estimate
rotationMag = abs(innovation);
if rotationMag<1e-6
deltaQuat = single([1;0;0;0]);
else
deltaQuat = [cos(0.5*rotationMag); [deltaRotBody(1);deltaRotBody(2);deltaRotBody(3)]/rotationMag*sin(0.5*rotationMag)];
end
% Update the quaternion states by rotating from the previous attitude through
% the delta angle rotation quaternion
quat = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))];
% normalise the updated quaternion states
quatMag = sqrt(quat(1)^2 + quat(2)^2 + quat(3)^2 + quat(4)^2);
if (quatMag > 1e-12)
quat = quat / quatMag;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇