【图像加密】基于线性正则变换与混沌算法图像加密算法研究附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 随着信息技术的飞速发展,数字图像的安全传输和存储变得越来越重要。图像加密作为一种有效的安全手段,受到了广泛关注。本文研究了一种基于线性正则变换和混沌算法的图像加密算法。该算法首先利用线性正则变换对图像进行预处理,增强图像的抗攻击能力,然后结合混沌系统良好的伪随机性,对变换后的图像进行置乱和扩散操作,最终实现图像的加密。本文详细阐述了算法的设计原理、实现过程以及性能分析,并通过实验结果验证了该算法的有效性和安全性。

关键词: 图像加密;线性正则变换;混沌算法;置乱;扩散;安全性

1. 引言

数字图像作为一种重要的信息载体,广泛应用于各个领域。然而,数字图像的易复制性和易篡改性使得其安全传输和存储面临巨大的挑战。图像加密技术作为一种有效的安全保障措施,能够有效地保护图像信息不被非法访问和窃取。传统的图像加密算法,如DES和AES等对称加密算法,虽然在安全性方面表现良好,但其计算复杂度较高,难以满足实时性要求,尤其是在处理大规模图像数据时。近年来,基于混沌系统的图像加密算法因其计算速度快、密钥空间大、对密钥敏感等优点,成为研究热点。

本文提出了一种新型的图像加密算法,该算法结合了线性正则变换和混沌系统,有效地提高了图像加密的安全性。线性正则变换能够有效地去除图像中的冗余信息,提高图像的抗攻击能力,为后续的混沌加密奠定坚实基础。混沌系统则利用其良好的伪随机性,对图像进行置乱和扩散操作,实现对图像信息的有效隐藏。

2. 算法设计与实现

该算法主要由三个阶段组成:预处理阶段、置乱阶段和扩散阶段。

2.1 预处理阶段:线性正则变换

在图像加密之前,对图像进行预处理能够有效地增强算法的安全性。本算法采用线性正则变换作为预处理手段。线性正则变换是一种线性变换,能够将图像从图像空间转换到变换域,有效地去除图像中的冗余信息,并增强图像的抗攻击能力。常用的线性正则变换包括离散余弦变换(DCT)、离散小波变换(DWT)等。本文选择DCT变换作为预处理手段,其变换公式如下:

F(u, v) = c(u)c(v) Σ Σ f(x, y)cos[(2x+1)uπ/2N]cos[(2y+1)vπ/2N] 

其中,f(x, y)为图像像素值,F(u, v)为DCT变换系数,N为图像大小,c(u)和c(v)为归一化因子。

DCT变换后的系数具有能量集中特性,大部分能量集中在低频系数上,高频系数则相对较小。通过对高频系数进行适当的处理,可以进一步提高算法的安全性。

2.2 置乱阶段:基于混沌映射的置乱

置乱阶段的主要目的是改变图像像素的排列顺序,破坏图像的原始结构。本算法采用Logistic映射作为混沌系统,其迭代公式如下:

x_(n+1) = μx_n(1 - x_n)

其中,x_n为迭代值,μ为控制参数(通常取值为4)。通过迭代Logistic映射,可以生成一系列伪随机数序列。利用该序列,可以对DCT变换后的系数进行置乱操作。具体的置乱方法可以采用多种策略,例如Arnold变换、基于矩阵的置乱等。本算法采用基于矩阵的置乱方法,将伪随机数序列作为矩阵索引,重新排列DCT变换系数。

2.3 扩散阶段:基于混沌映射的扩散

扩散阶段的主要目的是改变图像像素的值,进一步提高图像的安全性。本算法同样采用Logistic映射生成伪随机数序列,对置乱后的DCT系数进行扩散操作。扩散操作可以采用多种方法,例如基于异或运算的扩散、基于模加运算的扩散等。本算法采用基于模加运算的扩散方法,将伪随机数序列与置乱后的DCT系数进行模加运算,实现对图像信息的扩散。

3. 性能分析与实验结果

为了评估该算法的性能,本文从密钥空间、密钥敏感性、信息熵、直方图、相关性等方面进行了分析。实验结果表明,该算法具有较大的密钥空间,对密钥高度敏感,信息熵接近理论值,直方图均匀分布,像素相关性极低,能够有效地抵抗各种攻击。

📣 部分代码

function fin = imread2Double(imagePath)

fin = imread(imagePath);

fin = rgb2gray(fin);

fin = 255 * im2double(fin);

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值