【雷达检测】非接触式生命体征传感器系统:基于雷达和微波信号的信号分析与处理Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

该项目利用微控制器单元(MCU)、笔记本电脑(PC)以及现有的硬件设置,通过雷达和微波信号读取用户的生命体征数据,并通过信号分析生成心跳、呼吸率等相关生命体征数据的分析结果。系统配备用户界面(UI),用于控制数据采集的开始时间、持续时间以及从原始信号数据到经信号分析处理后的信号的转换。所有代码均集成在该UI中,MCU代码可通过Silicon Labs IDE使用。

该项目的核心在于其非接触式的测量方式,这区别于传统的依赖于接触式传感器(例如心电图、脉搏血氧仪)的生命体征监测系统。这种非接触式测量避免了皮肤接触带来的不便和潜在的交叉感染风险,尤其在医疗保健、远程医疗和日常健康监测等领域具有显著的应用价值。通过利用雷达和微波信号的特性,系统能够远程、实时地获取人体微小的生理运动信息,进而推断出心跳、呼吸率等关键的生命体征参数。

系统的硬件架构主要由三个部分构成:MCU、PC和雷达/微波信号传感器。MCU作为系统的核心控制单元,负责采集传感器输出的原始信号,进行初步的数字信号处理(DSP),并通过串行通信(例如UART或USB)将数据传输至PC。PC则承担更复杂的信号处理和数据分析任务,例如滤波、特征提取、算法识别等,最终将处理后的结果以图形化界面展示在UI上。现有的硬件设置,指的是雷达或微波传感器及其配套的电源和接口电路,这些硬件为系统提供了获取生命体征信号的基础。

软件方面,系统采用了模块化设计,以提高代码的可维护性和可扩展性。MCU端的代码主要负责数据采集、预处理和数据传输,而PC端的代码则包含了更高级的信号处理算法、数据分析模块和用户界面。UI的设计注重用户友好性,提供了直观的参数设置和数据显示功能,使得用户能够方便地进行数据采集、参数调整和结果查看。使用Silicon Labs IDE能够方便地进行MCU程序的编写、调试和烧录。

该项目的信号处理部分是其技术核心。从雷达或微波传感器获取的原始信号通常包含大量的噪声和干扰,需要进行一系列的信号处理步骤,才能提取出与生命体征相关的有用信息。这些步骤可能包括:带通滤波器去除噪声,小波变换或傅里叶变换提取特征频率,以及基于机器学习算法的信号识别和分类。心跳和呼吸率的提取通常基于对信号频谱分析的结果,通过识别特定频率范围内的信号成分来确定心跳和呼吸的频率。

然而,该项目也面临一些挑战。首先,雷达和微波信号的精确度和稳定性会受到环境因素的影响,例如温度、湿度和周围物体反射的影响。这需要采用有效的抗干扰技术和信号校准方法来提高测量的精度和可靠性。其次,信号分析算法的复杂度和计算量可能较大,需要优化算法效率,以满足实时性要求。最后,数据安全和隐私保护也是一个重要的考虑因素,需要采取相应的措施来保护用户的个人信息。

总而言之,该非接触式生命体征传感器系统项目是一个具有创新性和应用价值的毕业设计项目。它利用先进的信号处理技术,实现了对生命体征的非接触式测量,为医疗保健和健康监测领域提供了新的可能性。尽管该项目还存在一些需要进一步改进的地方,但其为未来研究和发展提供了重要的参考和借鉴。 未来的研究方向可以集中在提高系统的精度、稳定性和可靠性,以及拓展其应用范围等方面。

📣 部分代码

%f = f;

% % Plot of FFT

% figure;

% plot(f, inputFFT);

%% Isolating Freqs to be Tested

[~, respInd] = max(inputFFT);

respFreq = f(respInd);

lowMask = f>0.8;

highMask = f<1.6;

mask = lowMask & highMask;

fNew = f(mask);

testRange = inputFFT(mask);

% %% Plotting Range of Data to be Tested

% figure;

% plot(fNew, testRange);

%% Setting a threshold and ordering Peaks

initVal = max(testRange);

thresVal = threshold.*initVal;

[pks, loc] = findpeaks(testRange, fNew);

[pksNew, pksInd] = sort(pks, 'descend');

%% Building Likely Heart Rate Values

hrVal = [];

for ind = 1:length(pksInd)

    

    pkInd = pksInd(ind);

    pk = pks(pkInd);

    pkLoc = loc(pkInd);

    

    if pk>=thresVal

        

        mult = pkLoc./respFreq;

        rem = abs(mult-round(mult));

        

        if (rem<=leeWay)

        

        else

            hrVal = [hrVal pkLoc];

        end

    end

end

hrEmpty = isempty(hrVal);

%Checking to see if all values are below threshold

if hrEmpty

    hrVal = initVal;

end

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值