【心电信号】基于低通滤波器原始心电图信号心率计算附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

心率是反映人体心血管系统功能的重要生理指标,其准确计算对临床诊断和健康监测至关重要。原始心电图 (ECG) 信号蕴含着丰富的生理信息,是计算心率的理想数据源。然而,原始ECG信号常常受到多种噪声的干扰,例如基线漂移、肌电干扰、电源干扰等,这些噪声会严重影响心率计算的准确性。因此,在进行心率计算之前,对原始ECG信号进行预处理,尤其是低通滤波,是至关重要的步骤。本文将深入探讨基于低通滤波器对原始心电图信号进行预处理,并以此计算心率的方法。

一、 原始心电图信号的特点及噪声分析

原始ECG信号是一个复杂的非平稳信号,其主要成分是反映心脏电活动特征的QRS波群、P波和T波。这些波形的形态和振幅蕴含着丰富的心脏电生理信息。然而,在实际采集过程中,ECG信号不可避免地受到多种噪声的干扰:

  • 基线漂移 (Baseline Wander): 主要由呼吸运动、体位变化等因素引起,表现为ECG信号整体缓慢的上下漂移,降低了信号的信噪比。

  • 肌电干扰 (Myoelectric Interference): 来自肌肉活动的电信号,通常表现为高频、幅度较大的尖锐噪声,严重掩盖了ECG信号的特征波形。

  • 电源干扰 (Power Line Interference): 主要由50Hz或60Hz的电源线干扰引起,表现为周期性的正弦波噪声,通常叠加在ECG信号上。

  • 其他噪声: 还包括一些随机噪声,例如传感器噪声、环境噪声等。

这些噪声的存在会严重影响心率计算的准确性,甚至导致错误的诊断结果。因此,在进行心率计算之前,必须对原始ECG信号进行有效的去噪处理。

二、 低通滤波器的作用及设计

低通滤波器是一种能够滤除高于设定截止频率的信号成分的滤波器。在ECG信号处理中,低通滤波器主要用于去除高频噪声,例如肌电干扰和部分随机噪声,保留主要的低频成分,即反映心脏电活动信息的QRS波群、P波和T波。

低通滤波器的设计需要考虑以下几个因素:

  • 截止频率 (Cut-off Frequency): 决定滤波器能够通过的最高频率。选择合适的截止频率至关重要,既要滤除噪声,又要尽量保留ECG信号的有效信息。通常,截止频率选择在40Hz左右,可以有效去除肌电干扰。

  • 滤波器的阶数 (Order): 决定滤波器的陡峭程度,阶数越高,过渡带越窄,但计算复杂度也越高。

  • 滤波器的类型 (Type): 常用的低通滤波器类型包括巴特沃斯滤波器 (Butterworth Filter)、切比雪夫滤波器 (Chebyshev Filter) 和椭圆滤波器 (Elliptic Filter) 等。巴特沃斯滤波器的幅频特性在通带较为平坦,在截止频率附近衰减较平缓;切比雪夫滤波器在通带或阻带具有较陡峭的衰减特性,但通带或阻带会有波动;椭圆滤波器具有最陡峭的衰减特性,但通带和阻带均会有波动。选择合适的滤波器类型需要根据实际情况进行权衡。

在实际应用中,通常采用数字低通滤波器,其设计方法包括:直接II型变换、双线性变换、脉冲响应不变法等。根据设计要求和计算能力选择合适的算法。

三、 基于低通滤波的心率计算方法

经过低通滤波处理后的ECG信号,噪声得到显著抑制,从而提高了心率计算的准确性。常用的心率计算方法包括:

  • 基于QRS波群检测的心率计算: 这是最常用的方法,首先利用各种QRS波群检测算法,例如阈值法、小波变换法等,检测出ECG信号中的QRS波群的R峰,然后根据相邻R峰之间的时间间隔计算心率。

  • 基于频谱分析的心率计算: 通过对ECG信号进行傅里叶变换,得到其频谱图,然后根据频谱图中主要的频率成分计算心率。该方法对噪声比较敏感。

四、  结论

本文详细论述了基于低通滤波器对原始心电图信号进行预处理,并以此计算心率的方法。低通滤波器可以有效地去除ECG信号中的高频噪声,提高心率计算的准确性。选择合适的滤波器类型、阶数和截止频率,以及有效的QRS波群检测算法,对于提高心率计算的精度至关重要。未来的研究可以关注更加鲁棒的噪声消除方法以及更加精确的心率计算算法的开发。

📣 部分代码

patient_no = 10;

fname = strcat('samples/patient',num2str(patient_no),'/');

files=dir([fname '/*.mat']);

n=size(files,1);

sig =[];

t = [];

for k=1:1:n

    load(strcat(fname,'/seg0',num2str(k)));

    sig = cat(1,sig,sig1);

    t = cat(1,t,tm1+((k-1)*10));

    if(k<n)

        t(end)=[];

        sig(end)=[];

    end

end

N = length(t);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值