✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 医学图像的安全性至关重要,其泄露可能导致严重的隐私侵犯和医疗事故。然而,传统的加密方案在处理海量医学图像数据时往往计算量巨大,难以满足实时性要求。本文提出了一种基于混沌映射和图像加扰的轻量级医学图像加密方案,旨在兼顾安全性与效率。该方案利用Logistic映射和Arnold变换生成伪随机序列,对图像像素进行置乱和扩散操作,实现高效的加密过程。实验结果表明,该方案具有良好的安全性,能够有效抵抗多种攻击,同时计算复杂度较低,适合在资源受限的移动医疗设备上应用。
关键词: 医学图像加密;混沌映射;图像加扰;轻量级;Logistic映射;Arnold变换
1. 引言
随着医学影像技术的飞速发展,医学图像在临床诊断、远程医疗和医学研究中发挥着越来越重要的作用。然而,医学图像往往包含高度敏感的个人健康信息,其安全性面临着严峻的挑战。一旦医学图像泄露,可能导致患者隐私被侵犯,甚至引发医疗纠纷和社会恐慌。因此,对医学图像进行有效加密至关重要。
传统的加密算法,如AES和DES,虽然具有较高的安全性,但在处理海量医学图像数据时,其计算复杂度较高,难以满足实时性要求,尤其是在移动医疗、嵌入式设备等资源受限的环境下。为此,研究人员致力于开发轻量级加密方案,以平衡安全性与效率。
混沌系统具有对初始条件和参数极其敏感的特性,产生的序列具有良好的随机性,因此成为图像加密领域的重要工具。本文提出一种基于混沌映射和图像加扰的轻量级医学图像加密方案,利用Logistic映射产生密钥流,并结合Arnold变换进行图像置乱,实现高效安全的医学图像加密。
2. 方案设计
本方案主要分为两个阶段:密钥生成和图像加密。
2.1 密钥生成
密钥生成阶段利用Logistic映射产生伪随机序列作为加密密钥。Logistic映射定义如下:
x<sub>n+1</sub> = μx<sub>n</sub>(1 - x<sub>n</sub>), 0 < x<sub>n</sub> < 1, 0 < μ ≤ 4
其中,x<sub>0</sub> 为初始值,μ 为控制参数。通过选择合适的x<sub>0</sub> 和 μ,可以产生具有良好统计特性和混沌特性的序列。本方案采用两个不同的Logistic映射,分别生成控制置乱和扩散过程的密钥流。为了增强安全性,初始值x<sub>0</sub> 和控制参数μ可以根据患者信息或时间戳等动态生成。
2.2 图像加密
图像加密阶段主要包括图像置乱和图像扩散两个步骤:
2.2.1 图像置乱 (Arnold 变换)
Arnold变换是一种典型的图像置乱算法,其变换矩阵为:
A = [[1, 1],
[1, 2]]
通过对图像像素坐标进行Arnold变换,可以实现图像像素的全局置乱。本方案利用Logistic映射生成的第一个密钥流来控制Arnold变换的迭代次数,从而实现密钥相关的图像置乱。迭代次数的随机性增强了加密算法的安全性。
2.2.2 图像扩散 (像素级异或)
图像扩散阶段采用像素级异或操作,将Logistic映射生成的第二个密钥流与置乱后的图像像素进行异或运算,实现像素值的扩散。该操作能够有效地隐藏图像的统计特性,增强加密算法的抗统计攻击能力。
3. 安全性分析
本方案的安全性主要体现在以下几个方面:
-
密钥空间: Logistic映射的参数和初始值构成了密钥空间,通过选择合适的参数和初始值,可以生成巨大的密钥空间,有效抵抗穷举攻击。
-
抗统计攻击: 混沌映射生成的密钥流具有良好的随机性,结合Arnold变换和像素级异或操作,能够有效地破坏图像的统计特性,如直方图、相关性等,使其抵抗统计攻击。
-
抗差分攻击: Logistic映射对初始条件和参数极其敏感,微小的变化都会导致密钥流的巨大差异,从而有效抵抗差分攻击。
-
抗已知明文攻击: 由于密钥的随机性和加密算法的复杂性,已知明文攻击难以获得有效的密钥信息。
4. 实验结果与分析
为了验证本方案的有效性,我们进行了实验,对不同类型的医学图像进行了加密和解密。实验结果表明,该方案能够有效地加密医学图像,加密后的图像具有良好的视觉不可见性,并且能够抵抗多种攻击。同时,该方案的计算复杂度较低,加密速度较快,满足轻量级应用的需求。 具体的实验结果,包括信息熵、直方图分析、相关性分析等将在论文的附录中详细给出。
5. 结论与未来工作
本文提出了一种基于混沌映射和图像加扰的轻量级医学图像加密方案,该方案利用Logistic映射和Arnold变换,实现了高效安全的医学图像加密。实验结果表明,该方案具有良好的安全性,计算复杂度低,适合在资源受限的移动医疗设备上应用。
未来的工作将集中在以下几个方面:
-
探索更复杂的混沌映射,以提高加密算法的安全性。
-
结合其他图像处理技术,进一步优化加密算法的效率。
-
研究该方案在不同医疗设备上的实际应用,并进行更全面的安全性评估。
📣 部分代码
blocks = mat2cell(img, block_size(1)*ones(1,rows/16), block_size(2)*ones(1,cols/16));
[rows_,cols_] = size(blocks);
%PHASE 1: KEY GENERATION
%PHASE 1A: KEY GENERATION FOR BAKER'S MAP
x = 0.16; y = 0.91; n = 256; cp = 0.142;
xkey = zeros(n,1); ykey = zeros(n,1);
for i = 1:n
xkey(i) = x;
ykey(i) = y;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇