✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 结构拓扑优化旨在在满足一定的性能约束条件下,寻找给定设计空间内材料分布最优方案,以达到结构轻量化、提高承载能力等目的。本文提出一种基于强化学习与双向进化结构优化(BESO)算法相结合的结构拓扑优化方法。该方法利用强化学习的全局搜索能力指导BESO算法的局部寻优过程,从而有效提高优化效率和最终解的质量。文章详细阐述了该方法的原理、算法流程以及Matlab代码实现,并通过数值算例验证了其有效性。
关键词: 结构拓扑优化;强化学习;BESO算法;Matlab;轻量化设计
1. 引言
结构拓扑优化作为一种强大的设计工具,广泛应用于航空航天、土木工程和机械制造等领域。传统的拓扑优化方法,如水平集法、SIMP法和BESO法等,虽然在解决特定问题上取得了显著成果,但仍然面临着一些挑战,例如容易陷入局部最优解、计算效率低以及对初始设计敏感等。近年来,人工智能技术,特别是强化学习,在解决复杂优化问题方面展现出巨大的潜力。强化学习能够学习复杂的策略,探索广泛的设计空间,并具有跳出局部最优解的能力。因此,将强化学习与传统的拓扑优化方法相结合,有望克服传统方法的局限性,进一步提升优化效率和解的质量。
本文提出一种基于强化学习与BESO算法相结合的结构拓扑优化方法。BESO算法作为一种高效的拓扑优化算法,具有计算速度快、收敛性好的优点。然而,BESO算法的寻优过程容易受初始设计的影响,可能陷入局部最优解。强化学习则能够引导BESO算法在设计空间中进行更有效的搜索,避免陷入局部最优,最终获得更优的结构拓扑方案。
2. BESO算法概述
双向进化结构优化(BESO)算法是一种基于密度法的拓扑优化算法。其基本思想是通过迭代地更新单元的密度值,逐步去除材料少的单元,保留材料多的单元,最终得到最优的结构拓扑。BESO算法的主要步骤如下:
-
初始化: 为每个单元赋予初始密度值。
-
灵敏度分析: 计算每个单元的灵敏度,衡量单元对目标函数的影响。
-
更新密度: 根据灵敏度值和预设的进化参数,更新单元的密度值。BESO算法的关键在于其独特的密度更新策略,通过同时进行材料的添加和去除,加快了收敛速度。
-
过滤: 对密度场进行滤波处理,避免出现棋盘格现象。
-
迭代: 重复步骤2-4,直到满足收敛条件。
BESO算法的效率和效果很大程度上取决于进化参数的选择。不恰当的参数选择可能会导致算法收敛缓慢或陷入局部最优解。
3. 强化学习在结构拓扑优化中的应用
强化学习是一种通过试错学习来获得最优策略的方法。在结构拓扑优化中,可以将强化学习代理视为一个“设计师”,它通过与环境(即有限元分析模型)的交互来学习如何设计最优的结构拓扑。具体来说,强化学习代理可以根据当前的结构状态(例如单元密度、应力分布等)选择一个动作(例如增加或减少单元密度),并根据结果获得奖励。通过不断地学习和迭代,强化学习代理最终能够学习到一个有效的策略,引导BESO算法进行有效的搜索。
本文采用深度Q网络(DQN)作为强化学习算法。DQN通过神经网络逼近Q函数,学习状态-动作值函数,从而选择最优的动作。在结构拓扑优化中,状态可以表示为单元密度场,动作可以表示为BESO算法中的进化参数。奖励函数则可以根据结构的性能指标(例如刚度、重量等)来设计。
4. 基于强化学习与BESO相结合的结构拓扑优化方法
本方法将强化学习作为BESO算法的指导策略,具体步骤如下:
-
初始化: 初始化BESO算法参数和DQN网络参数。
-
BESO迭代: 使用BESO算法进行一次迭代,更新单元密度场。
-
状态获取: 将当前单元密度场作为DQN网络的输入状态。
-
动作选择: DQN网络根据当前状态选择一个动作,即调整BESO算法中的进化参数。
-
BESO迭代(强化学习引导): 使用更新后的BESO参数进行一次迭代。
-
奖励计算: 根据结构的性能指标计算奖励值。
-
网络更新: 使用奖励值更新DQN网络参数。
-
迭代: 重复步骤2-7,直到满足收敛条件。
📣 部分代码
%
% Variable Description:
% shape - shape functions for four-node element
% dshapedxi - derivatives of the shape functions w.r.t. xi
% dshapedeta - derivatives of the shape functions w.r.t. eta
%
% Notes:
% 1st node at (-1,-1), 2nd node at (1,-1)
% 3rd node at (1,1), 4th node at (-1,1)
%------------------------------------------------------------------------
gausspoint = [-0.577350269189626 -0.577350269189626;
0.577350269189626 -0.577350269189626;
0.577350269189626 0.577350269189626;
-0.577350269189626 0.577350269189626] ;
wt = [1 ;1;1; 1];
xi = gausspoint(:,1);
eta = gausspoint(:,2);
% shape functions, [N1,N2,N3,N4;] for every gauss point
shape = zeros(4,4);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇