✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 安全关键的多智能体系统(MAS)在诸多领域得到广泛应用,例如自动驾驶、无人机编队和机器人协作等。然而,由于环境的不确定性以及智能体自身模型的误差,保证这类系统的安全性和稳定性成为一个极具挑战性的课题。本文着重研究在不确定环境下,针对安全关键型多智能体系统连续控制问题的二次规划(Quadratic Programming, QP)方法。我们将探讨如何利用QP框架有效地处理系统的不确定性,并设计满足安全约束的控制策略,最终实现系统的稳定性和安全性。
关键词: 多智能体系统;安全关键;不确定性;连续控制;二次规划;约束优化
1. 引言
随着人工智能和自动化技术的快速发展,多智能体系统在越来越多的领域展现出巨大的应用潜力。然而,许多实际应用场景,例如自动驾驶和医疗机器人,对系统的安全性和可靠性提出了极高的要求。任何微小的错误都可能导致灾难性的后果。因此,研究安全关键型多智能体系统的控制方法至关重要。
传统的控制方法往往难以有效处理多智能体系统中存在的复杂性,例如智能体之间存在的耦合性、环境的不确定性以及系统模型的误差。这些因素都会对系统的稳定性和安全性造成威胁。相比之下,二次规划方法因其能够有效处理约束优化问题,并具有良好的求解效率,成为解决安全关键型多智能体系统控制问题的一种 promising 方法。
本文将深入探讨基于二次规划的连续控制方法,用于处理不确定安全关键多智能体系统。我们将详细分析不确定性的来源及影响,并提出相应的鲁棒性控制策略。通过构建合适的代价函数和约束条件,利用二次规划求解器获得最优控制策略,确保系统在满足安全约束的前提下实现期望的目标。
2. 系统模型与问题描述
考虑一个由N个智能体组成的多智能体系统,每个智能体的动力学模型可以表示为:
ẋᵢ = fᵢ(xᵢ, uᵢ, wᵢ, t), i = 1, ..., N (1)
其中,xᵢ ∈ R<sup>nᵢ</sup> 表示智能体i的状态向量,uᵢ ∈ R<sup>mᵢ</sup> 表示智能体i的控制输入向量,wᵢ ∈ R<sup>pᵢ</sup> 表示智能体i受到的不确定性扰动,t表示时间,fᵢ(.)表示智能体i的动力学函数。
为了简化问题,我们假设智能体的动力学模型可以线性化:
ẋᵢ = Aᵢxᵢ + Bᵢuᵢ + Eᵢwᵢ, i = 1, ..., N (2)
其中,Aᵢ, Bᵢ, Eᵢ分别为相应的系统矩阵。
系统的目标是使所有智能体达到期望的状态xᵢ<sup>*</sup>,同时满足一系列安全约束,例如避免碰撞、保持安全距离等。这些约束可以表示为:
gᵢ(xᵢ, uᵢ, t) ≤ 0, i = 1, ..., N (3)
其中,gᵢ(.)表示智能体i的约束函数。
3. 基于二次规划的鲁棒控制策略
为了设计鲁棒的控制策略,我们将采用二次规划方法。代价函数可以定义为:
J = ∑ᵢ (xᵢ - xᵢ<sup></sup>)<sup>T</sup> Qᵢ (xᵢ - xᵢ<sup></sup>) + ∑ᵢ uᵢ<sup>T</sup> Rᵢ uᵢ (4)
其中,Qᵢ和Rᵢ分别为正定权重矩阵,用于平衡跟踪性能和控制输入的代价。
为了处理不确定性,我们采用一种基于模型预测控制(MPC)的思路。通过预测未来一段时间内的系统状态,并考虑不确定性的影响,我们可以预先制定控制策略,从而提高系统的鲁棒性。具体来说,我们可以将不确定性wᵢ建模为一个有界扰动:
||wᵢ|| ≤ Wᵢ, i = 1, ..., N (5)
通过引入合适的约束条件,例如:
gᵢ(xᵢ(k+1|k), uᵢ(k|k), t) ≤ 0 (6)
其中,xᵢ(k+1|k)表示在k时刻预测的k+1时刻的状态,uᵢ(k|k)表示在k时刻计算的控制输入。
最终,我们可以将问题转化为一个二次规划问题:
min J
s.t. (2), (3), (5), (6)
4. 求解与仿真
利用成熟的二次规划求解器,例如QP solvers in MATLAB or OSQP,可以有效地求解上述优化问题,得到最优控制输入uᵢ。仿真实验可以验证所提出方法的有效性,并分析不同参数对系统性能的影响。 仿真结果应包括系统状态轨迹图、控制输入图以及安全约束满足情况等,以全面评估控制策略的性能。
5. 结论与未来工作
本文提出了一种基于二次规划的鲁棒控制方法,用于解决不确定安全关键多智能体系统的连续控制问题。通过合理的代价函数设计和约束条件设定,该方法能够有效地处理系统的不确定性,保证系统的稳定性和安全性。未来工作将集中在以下几个方面:
-
更复杂的系统模型:研究非线性系统和混合系统的控制问题。
-
更精细的不确定性建模:例如,考虑概率分布的不确定性。
-
分布式优化算法:研究分布式二次规划算法,以提高系统的可扩展性和实时性。
-
实验验证:将提出的方法应用于实际的多智能体系统中进行实验验证。
📣 部分代码
x = zeros(8, na); % actuation state of agent
vp = zeros(2, na); % ideal velocity
v_set = zeros(2, na); % the input of the actuation
delta = zeros(1, na); % the slack variable
% define the initial position
theta = linspace(0, 2*pi, 4);
p = [cos(theta(1:3)+pi/6); sin(theta(1:3)+pi/6)];
p_aim = [cos(theta(1:3)+pi/1); sin(theta(1:3)+pi/1)];
% quadraitc programming setting
Ap_i= getPolyAb(11, 1, 0); %
ap_i= zeros(size(Ap_i, 1), na);
A = zeros(na-1, 2, na);
b = zeros(na-1, 1, na);
Ds = 0.3;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇